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ABSTRACT

A method of determination of a developable ruled surface is given by Kose. In this
paper, first we have obtained the parametric equations of dual hyperbolic and
Lorentzian unit spheres (DHUS) H§+and (DLUS) S? and then presented a method of
determination of a developable time-like ruled surface. We have given an application
about two-component Wadati-Konno-Ichikawa (WKI) equation. Inextensible flows of
developable surfaces are given. In the final part of this paper, we have discussed
inextensible flows of a developable time-like ruled surface.

Keywords: Developable time-like ruled surface; dual hyperbolic and lorentzian
unit spheres; linear differential equation.

INTRODUCTION

Ruled surfaces and especially developable surfaces are used in designing cars,
ships, manufacturing products and some other areas such as motion analysis,
simulation of rigid body and model-based object recognition systems. After
1960, Coons, Ferguson, Gordon, Bezier, and others developed new surface
definitions. However, modern surface modeling system still includes ruled
surfaces.

Minkowski space is named after the German mathematician Hermann
Minkowski, who around 1907 realized that the theory of special relativity
(previously developed by Einstein) could be elegantly described using a four-
dimensional spacetime, which combines the dimension of time with the three
dimensions of space. There are a number of papers dealing with ruled surfaces
in Lorentz-Minkowski space (Coken et al., 2008; Kasap et al., 2005; Kazaz et
al., 2008; Kose, 1999 and Turgut & Hacisalihoglu, 1997). Motion of plane
curves in the Minkowski space M> was also investigated by Giirses (1998).
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Furthermore, motion of curves in the Minkowski 3-space has been considered
by several authors (Study, 1903; Kose, 1982 and Yayl et al., 2002). Considering
that the normal speed of the curve can be given by —k;, one finds that u satisfies
the celebrated Wadati-Konno-Ichikawa (WKI) equation' u, = [uxx.(l + ui)_y 2}
where u = u(x, t), called the one-parameter family of the curve, is the inextensiblé
evolution of the curve. It is shown that two-component WKI equation, i.e. a
generalization of the well-known WKI equation obtained from the motion of
space curves in Euclidean geometry. Moreover, motions of curves in the four-
dimensional Euclidean and Minkowski space are discussed; it has been pointed out
in Zhang & Hou (2007) that the three component WKI equation and its
hyperbolic type arise from certain curve motion flows.

Dual numbers were introduced by W.K. Clifford (1845-79) as a tool for his
geometrical investigations. After him Study (1903) used dual numbers and dual
vectors in his research on the geometry of lines and kinematics (Blaschke, 1930).
He devoted special attention to the representation of directed lines by dual unit
vectors and defined the mapping that is known by his name. There exists a one-
to-one correspondence between the vectors of dual unit sphere S> and the
directed lines of space of lines R? (Study, 1903). Therefore, the motion locus of
a straight line in R* can be described by that of a point on the surface of dual
unit sphere S? in dual space D?. Then a ruled surface in R* corresponds to a
unique dual curve on the surface of S (Guegenheimer, 1977). It was also
studied on the dual spherical motions by Kose (1982). If we take the Minkowski
3-space R} instead of R? the E. Study mapping can be stated as follows. The
dual time-like and space-like unit vectors of dual hyperbolic and Lorentzian unit
spheres H3" and S? at the dual Lorentzian space D? are in one-to-one
correspondence with the directed time-like and space-like lines of the space of
Lorentzian lines R?, respectively (Ugurlu & Caliskan, 1996). Then a
differentiable curve on HZ' corresponds to a time-like ruled surface in R3.
Similarly the time-like (resp. space-like) curve on S? corresponds to any space-
like (resp. time-like) ruled surface in R?.

A dual number has the form x + ex* where x and x* are real numbers and
e =(0, 1) is the dual unit with the property that e> = 0. The set of all dual
numbers forms a commutative ring over the real number field and is denoted
by D.

WKI equation obtained from the motion of space curve ¢ (s, t) in Euclidean space, the

subscript s is the arc-length parameter, x and 7 are respectively the curvature and torsion

of the curve, which satisfy the vector equation k;+ K —I—%nzm =0 where
S

k= (kcos®, ksinf), 0= [7(t, s)ds.
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The dual vector space D? (or D-Module) can be written as
D’ = {(A4), Ay, A3) : Ay, Ay, A3 € D}.
The inner-product of two dual vectors 4, B € D? is defined as,

() : DPxD? —
(4, B)  — (4,B) = (x,) +e({x"p) + (x,07)

Given a dual vector 4 = x + ex*, the norm of 4 is

41 = (. 4= ] + £ 5 5 20

The cross-product of two dual vectors A4, B € D? is defined as ,

A: D’xD' — DI
(A, B) — AAB=xAy+e(xAy +x*Ay)

where A stands for the Lorentzian cross-product in R* given by

3
x/\y:ZS[det(ej, X, y)elv & = <€,’,€j>. (1)

i=1

Detailed information on Lorentzian cross-product on Rj can be found in
(Akutagawa & Nishikawa, 1990).

The Lorentzian inner-product of two dual vectors 4 =x+ex* and
B=y+ey*, x,yeRisgivenas

<A»B> = <x7y> + 6(<X*7y> + <x7y*>)

with the signature (+, 4+, —) in Rj. The D-module D’ with the Lorentzian
inner-product is named as the semi-dual space D} (Ugurlu & Caliskan, 1996).
Similar to O’Neill (1983), given a dual vector 4 in D7, if (x,x) < 0, 4 is called a
time-like vector; if (x,x) > 0, 4 is called space-like vector; and if (x,x) =0, 4
is called null vector. A smooth curve on the semi-dual space D3 is said to be
time-like, space-like or null if its tangent vectors are time-like, space-like or null,
respectively (Ugurlu & Caliskan, 1996). Observe that, a time-like curve
corresponds to the path of an observer moving at less than the speed of light
while the space-like curves are faster and the null curves are equal to the speed
of light (Inoguchi, 1998).
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The dual-semihyperbolic space (the dual hyperbolic unit sphere) H(z]+ and the
dual-semisphere (or the dual Lorentzian unit sphere) S7 can be given as

H = { () = x(t) + ex*(1)]

%] = (1,0);x,x* € R}, and where x timelike vector }
and
§? = { 2(1) = x(t) + sx*(l)| | x| = (1,0),x,x" € R}, and where x spacelike vector}.

Study (1903) mapping in D? can be stated as "there is a one-to-one
correspondence between dual vectors of dual-hyperquadrics and directed
straight lines in R3" (Study, 1903). As a result, we can say that in D3,

(1) The dual timelike unit vectors of dual hyperbolic unit sphere H%* are in
one-to-one correspondence with directed timelike straight lines in Rf .

(2) The dual spacelike unit vectors of dual-Lorentzian unit sphere S? are in
one-to-one correspondence with directed spacelike straight lines in R?
(Ugurlu & Caliskan, 1996).

Now, we give some properties of A without proof:

Letting 4,B,C € D?, it is straight forward to see the following. ANB=0< 4
and B are linearly dependent; ANB=—-BAA; (AANB,A)=(ANB,B)=0;
(ANB,C)=(BANC,A); A or Bis time-like = AAB is space-like and
(ANB,ANB) = (A, B)* — (4, 4)(B, B) (Ozdemir & Ergin, 2006).

In this study, using the methods given in Kose (1999), we determine a method
of determination of a developable time-like ruled surface on both dual
hyperbolic unit spheres and Lorentzian unit spheres and obtain a linear
differential equation of the first order, which can also provide an application in
physics.

THE RELATION BETWEEN K AND A

Let L be any line, x be the direction vector of L and p be the position vector of
any point on L. It is known that a dual vector representation allows us the
Plucker vectors x and p A x. If we denote the dual vector by x(¢), then we can
write

X(t)=x+e(PpAx)=x+ex"

where ¢ is called the dual unit such that €2 = 0. Let ¢ be a parameter and £(z) be
the dual vector function. We can write
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X(t) = x(t) +e(p(t) AN x(1)) = x(1) + ex™(2)

The dual vector function x(z) defines a ruled surface m(z, u) = p(¢) + ux(). It
is known that the dual time-like or space-like unit vector %(z) is a differentiable
curve on a dual hyperbolic unit sphere H%*or dual Lorentzian unit sphere S?,
respectively.

By Study map, if x(#)is time-like, then it corresponds to time-like ruled
surface on R3; if %(¢) is spacelike, it corresponds to either time-like or space-like
ruled surface on R} (Ugurlu & Caligkan, 1996). The dual arc-length of ruled
surfaces %()is defined by

o
|

The integrant of this equation (5(z)) is the dual speed, 6 of %(r)and is

dx

Ed[

(50
A dx dt’ dt dx
6=|— 2 || == (1+EeA).
’ dt dx|? ‘ dt (1+e4)
dr

The curvature function

dx dp/\ dx dx”

A i’ di" _\dt’ dt 2)
dt dt

is the well-known distribution parameter of the time-like ruled surface.

Given a time-like ruled surface m(¢, u), if A is the distribution parameter and
K is the Gaussian curvature of m(¢, u) = p(¢) + ux(¢), then the relation between
A and K is as follows:

m, = p'(t) + ux'(t), m, = x(¢) and m,, =0 (3)
and

EG — P = |8’ (A% +17) (4)

The Gaussian curvature of a surface is given by
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Ln — n?

K=%—F (5)

where £E=<m,, m, >, F=<m, m, > and G =<m,, m, > are the first
fundamental coefficients and

m; Am, m; Am, m; Am,
l=(my, ——), m=(my,, ——— ) and n=(m,,, ———
[[m; A m,| [y A my [[my A my|

are the second fundamental coefficients. Then the relation between the Gaussian
curvature K and the distribution parameter A of a time-like ruled surface
m(t, u) is given by (Kasap et al., 2005):

B Ln — m? A2

K_EG—FQ:_(A2+M2)2

()

If K is zero everywhere, then A is zero everywhere. In this case, the time-like
ruled surface is called developable. If X is a space-like unit vector, then

A METHOD OF THE DETERMINATION OF DEVELOPABLE
TIMELIKE RULED SURFACE ON Hﬁ+

Given any point x on the dual hyperbolic unit sphere H(zﬁ, the dual coordinates
of %(¢)can be given as

Xi=xi+exi,i=1,2,3.

It is known that, the dual hyperbolic radian angle between two dual time-like
vectors in the Lorentzian plane L? is ¢ = ¢ 4+ e¢* (Birman & Nomizu, 1984). Let
X(#)be a time-like ruled surface and a,, d», @; be the Blashcke, (1930) trihedron

. . . ~ ~ - . . . ~ a ~ A
of striction line of (7). Here % = a; is time-like, a4 ==, ¢ =/|< &, d| >|
q .
and a; = —a; A 4, are space-like vectors. Given two unit dual vectors d@; and b,

as in Fig. 3.1,
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if we denote the dual hyperbolic angle between a; and bby ¢ = ¢+ e¢*, we can
write b(¢) = sinh ¢ a, + cosh ¢ a3 (Birman & Nomizu, 1984). The line b(¢) for the
time-like ruled surface corresponds to the spherical curvature center on the dual
hyperbolic unit sphere (Ugurlu & Caliskan, 1996).

Let P = (%1, %, %3) be a point on DHUS H3*. The intersection of H3" and
the L? plane, passing through the point P and the origin, is the Lorentzian unit
circle in L*(Fig. 3.2). Let’s denote the point on the unit circle as P;. Clearly,
P, = (sinh ¢, cosh ¢ ). Thus, we can write

X = ucosf
. S (8)

X, = usinf
where 0 is the angle of real unit sphere. On the other hand, %3 can be given in
terms of ¢ as X3 = cosh ¢. Since u = sinh ¢ in L%, we can finalize that

£1 = cosfsinh qg
% = sinfsinhe 9)
% = cosho

where 6 = 6 + ¢6* and ¢ = ¢ + £¢* are dual angles.

As a result, we obtain the parametric equation of time-like ruled surface
on H%* by using the Study map. Now let f be a differentiable function. Then the
Taylor series generated by f'is

J(R) = flx + ex™) = flx) + ex’f (%),

where f’(x) is the derivative of f(Hacisalihoglu, 1983).
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Now, let’s write X;, X; and X3 in terms of the real and dual parts. Using the

Taylor series expansion (¢2 = &3 = ... = 0) from (9), we obtain

X1 = cos(f+ e6*) sinh(¢ + e¢*)

(10)
= cos fsinh ¢ + [¢* cos O cosh ¢ — 0" sin O sinh @)
and
X, =sin(f + €0*) sinh(¢ + e¢*)
(11)
= sin #sinh ¢ + [¢* sin § cosh ¢ + 6 cos O sinh @]
and
X3 = cosh(¢ + €¢*) = cosh ¢ + £¢* sinh ¢ (12)
From (10), (11) and (12), we obtain the real parts as
x| = cosfsinh¢
X, = sinfsinh¢ (13)
x3 = cosho
and the dual parts as
X] = ¢*cosfcosh¢p — 0" sinfsinh ¢
X5 = ¢*sinfcosh ¢ + " cosfsinh ¢ (14)
X3 = ¢ sinh¢

Hence, a dual curve may be represented by

x(t) = (cosf(t)sinh ¢(1), sin O(¢) sinh ¢(¢), cosh ¢(¢))
+e[p* (1) cos B(t) cosh ¢ (1) — 6 () sin 6(¢) sinh &(1), (15)
¢* (1) sin 0(1) cosh ¢(1) + 0*(t) cos O(¢) sinh ¢(¢), ¢*(¢)sinh ¢(7)]

In accordance with the Study map, the dual curve on a DHUS corresponds to
the time-like ruled surface

m(t, u) = p(1) + ux(?) (16)

Since x*(1) = p(t) A x(t), we have
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€] (%) —e3
x(1) = p() A x(1)= — Py P, Py
cosO(t)sinh ¢(¢) sin6(¢)sinh ¢(z) cosh ¢(¢)

where Py, P, and P; are the coordinates of p(¢). Thus,

x*(t) = (—Pycosh(t) + P3sinf(t) sinh ¢(1),
P cosh ¢(t) — P3 cos6(t) sinh ¢(1), (17)
Py sin6(¢) sinh ¢p(1) — P, cos () sinh (1))

Using this in (15) and (17), we get

X(1) = x(1) + e(p(1) A x(1))

and
— Pycosh¢ + P3sinflsinh¢ = ¢* cosfcosh ¢ — 0" sinfsinh ¢
Py cosh¢p — P3 cosf sinh¢p = ¢*sinfcosh + 0*cosfsinh¢p  (18)
Pisinfsinh ¢ — Pycosfsinhg = *sinh¢

The coefficient matrix with respect to Py, P», P3 of (18) is as follows

0 — cosh ¢(1) sin 0(¢) sinh ¢(¢)
A= cosh ¢(1) 0 —cos 0(t) sinh ¢(¢)
sin O(¢) sinh ¢(¢) — cos O(¢) sinh ¢(¢) 0

The rank of matrix 4 is 2. Hence the solution of (18) depends on a parameter.
That is,

Py = (P3+0") cosftanh ¢ + ¢* sinf
P, = (P3+6")sinftanh¢ — ¢* cosé (19)
Py = P

Since P3(f) can be chosen arbitrarily, then we may take P3(¢) = —6*(¢). In
this case, (19) becomes
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Pi(t) = ¢*(1)sinb(z)
Py(t) = —¢*(1)cosb(1) (20)
Pi(t) = —0°(1)

The distribution parameter of time-like ruled surface given by (15) is

AN dody” > dod’
(dt> 0] smhqﬁcoshgb—i—— 7 h” ¢ + Tl

A= vy (21)
sinh2¢< dt) +( df)

If this timelike ruled surface is developable, then A = 0 and so (21) becomes

do\* dodos ., . dpdp
<d> o8 smhgbcoshgb—i—jd sinh ¢+Edl =0 (22)
If (22) is divided by both — sinh? ¢ and j then we obtain
ao\” . db do*
9 (coth dt ¢ thg)—dLdt _ 23
%(CO ¢) - d¢* ( Co ¢) - d¢* - ( )
dt dt

Setting

_(@) & do do*
) = coth (1), A(f) = —9I AB(1) — —dL dt
»(1) = coth ¢(t), ()*Tfm ()*—Tw

dt dt

we are led to a linear homogeneous differential equation of the first order

d
S0+ A(3(0) + B) = 0. (24)

If we assume that 6(7) and ¢(7) are both constant, (24) is identically zero, in

other words, the developable timelike ruled surface x() is a cylinder.

Now we can ask a question:

"When a curve p(¢) is given, can we find a time-like developable ruled surface

such that its base curve is the curve p(7)?”.
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The answer is YES. In fact from (20), we have

Pli (b*sinﬁi x 2 9 %
P_z__gb*cosé__tane’ ¢" =+\/Pi+P; and 0" = —P;

Now we need to determine ¢(¢). The solution of the linear homogeneous
differential equation (24) gives coth¢(z). This solution includes an integral
constant, therefore we have infinitely many developable ruled surfaces such that
their base curve is p(1).

It is to be noted that ¢*(z) has two values; when we use the minus sign, we
obtain the reciprocal of the ruled surface x(¢) obtained by using the plus sign for
a given integral constant.

Example 1:

Consider the timelike curve

p(t) =3¢, 2t+1, t+1)

Then,
VR .
tan&:—thrl, " =132 +4t+1 and 0 = —1—1
and
db* do 3 L 4o 13142
= — - N - = 0000000
di Cd T B+ A+ A T YRt ditd

Substituting these values into (24), we obtain

1
(137 + 4t +1) 78(4— V132 + 4141

4
y(t)—(zH_ 1) =
<1 + %) (261 + 4)

dy(1) N @r+1)*

=0
I+ | (261 +4)
(2t+1)
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Fig. 3.3 Fig. 3.4

The solution of this differential equation (using the mathematical program
MAPLE) is

y(t) =cotho
V132 441+ 1 , 13t +2 (25)

Hence, the family of the developable time-like ruled surfaces is given by

m(z, u) = p(t)+ ux(t)

P P
=B 2t+1,1t41) —l—u(—({)—isinhd), ¢—isinh¢, cosh¢>
S Py . Py .
where x(7) is a timelike vector and x(z) = | — Esmh 0, Esmh ¢, cosh ¢ |.

The graph of the developable timelike ruled surface, given by (25), for C =0
indomain D : {-3 <t <3,—4 <u<4}isgivenin Fig. 3.3 and Fig. 3.4.

A METHOD OF THE DETERMINATION OF DEVELOPABLE
TIME-LIKE RULED SURFACE ON §?

Let X = x +ex* be a dual unit spacelike vector. Dual Lorentzian spherical
geometry (constructed by dual spacelike unit vectors) is similar to Real
Lorentzian spherical geometry (constructed by real spacelike unit vectors). We
denote the Dual Lorentzian Unit Sphere (DLUS) as

St = {2(1) = x(t) + ex*(1)

%]l = (1, 0), x, x* € R3, X Spacelike}

where ds*> = dx* + dy* — dz?, x}+x3—-xi=1.
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If dual unit spacelike vector X = x + ex* is connected to a parameter?, it
draws a curve on DLUS 3. £(¢) = x(¢) + ex*(#) dual curve corresponds to a
ruled surface in the Lorentzian line spaces R;. Let this be a time-like ruled
surface. This ruled surface corresponds to a timelike surface in the Lorentzian
line spaces R;.

Fy

Fig. 4.1 Fig. 4.2

Assume that the ruling curve is time-like. Let the dual hyperbolic central
angle between @; and b be ¢ = ¢ + £¢*. We can write

b(1) = cosh ¢ 4; + sinh ¢ a3

Let P = (%, X2, £3) be a point on S?. The intersection of L? plane, passing
through the origin and the point P and S7 is a unit Lorentzian circle on L? (Fig.
4.2). Denote the corresponding point of P on L? plane as P;. Then
P = (cosh 6, sinh gﬁ) Hence, we can write

X;] = ucosb (26)

X» = usinf

where 6 is the angle of real unit sphere.

In this case, the first component of P; is u = cosh ¢ and the second component
of P; is X3 = sinh ¢. Therefore, we have the parametric equation of S% as

£1 = cosfcosh gig
X) = sin 6 cosh qg (27)

X3 = sinhq@



32 Cumali Ekici and Erdal Oziisaglam

where 6 = 6 + 6" and ¢ = ¢ + c¢* are dual angles. Thus, we constructed the
parametric equation of a timelike ruled surface by using Study mapping of dual
points on DLUS.

Now, let us write |, %, and %3 as dual and real parts. Let > =3 = ... = 0.
Using the Taylor series expansion, we have

X1 = cos(f+eb*) cosh(¢ + e¢*)
= cosfcosh ¢ + g[¢p* cos §sinh ¢ — 6* sin 6 cosh @]

and

X, = sin(0 + €6*) cosh(¢ + ¢*)
= sinfcosh ¢ + €[ cos O cosh ¢ + ¢* sin @ sinh @]

and
X3 = sinh(¢ + €¢*) = sinh ¢ + €¢* cosh ¢ (30)
From the equations (28), (29) and (30), we obtain the real parts

xX] = cosfcosh¢
Xy = sinfcosh¢ (31)
x3 = sinh¢

and dual parts

X} = ¢*cosfsinh ¢ — " sinfcosh ¢
X5 = ¢*sinfsinh ¢ + 6" cos cosh ¢ (32)
X3

; ¢* cosh ¢
Hence, a dual curve may be represented by
x(t) = (cos@(r) cosh (1), sin O(¢) cosh ¢(1), sinh ¢(¢))
+e(¢*(¢) cos 0(¢) sinh ¢(r) — 0%(¢) sin 6(¢) cosh (1),
0" (t) cos 0(t) cosh ¢(t) + ¢*(¢) sin 6(t) sinh (1),
¢" (1) cosh ¢(1))

In accordance with Study map, the dual curve on a DLUS corresponds to the
ruled surface
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m(7, u) = p(1) + ux(1) (34)
Since x*(¢) = p(t) A x(t), we have
el () —e3
X*(l) :p(l)/\X(l): — P, P, P
cosO(t) cosh (1) sinf(z) cosh¢p(r) sinh ¢(7)
where Py, P,, P3 are the coordinates of p(z). Then
x*(t) = (—Pasinh ¢(7) + P3sin6(t) cosh ¢(1),
P sinh ¢(1) — P;3 cos6(t) cosh ¢(1), (35)
Py sin §(¢) cosh ¢(t) — Py cos O(t) cosh ¢(t))
Using this result in (33) and (35), we get
— P, sinh ¢ + P3sin @ cosh ¢ = ¢* cosfsinh ¢ — 6* sin O cosh ¢
Py sinh ¢ — P3 cos cosh ¢ = ¢*sinfsinh ¢ 4+ 0* cosfcoshop  (36)

Pysinfcosh ¢ — Prcosfcoshp = ¢* cosh o

The coefficient matrix with respect to Py, P,, P3 of (36) is as follows

0 — sinh ¢(7) sin 0(t) cosh ¢(¢)
A= sinh () 0 —cos 6(t) cosh ¢(1)
sin 0(t) cosh ¢(t) — cos@(z) cosh (1) 0

The rank of matrix A is 2. Hence the solution of (36) depends on a parameter.

That is,

P, = (P3+6") cosfcoth¢ + ¢*sinf
P, = (P3+6) sinfcoth ¢ — ¢* cosf (37)
Py = P;
Since P;(¢) can be chosen arbitrary, we may take P; = —6*(¢). In this case,
equation (37) reduces to
Py = ¢*(1)sinb(2)
P, = —¢*(t)cosb(r) (38)

Py = —9*(1)
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The distribution parameter of the timelike ruled surface given by (33) is

2 * *
<ﬁ) o coshqﬁsinhé—l—@de h? ¢ _49d¢

A dt dt dt dt (39)

do d
cosh? ¢<E) ( df)

If this time-like ruled surface is developable, then A = 0. So (39) becomes

2 * *
(‘m) ¢* cosh ¢ sinh ¢ + fi—‘i? osh? ¢ — %dz =0 (40)
C g ) do* .
If (40) is divided by — cosh” ¢ and o then we obtain
LA df dg*
d \dt) = (b _di dr
dt dt
Setting
do\” . do do*
) = tanh 6(), A1) = — 9/ ¢ d B(r) = — 4t d.
y( = tan ¢( ) - d¢* an ( - d(b*
dt dt

we are led to a linear homogeneous differential equation of the first order

d
30+ AO¥(0) + B(1) =0 (42)

If we assume that 6(7) and ¢(7) are both constant, (42) is identically zero; in
other words, the developable timelike ruled surface X(7) is a cylinder.

Now we can ask a similar question to the case of DHUS:

"When a curve p(7) is given, can we find a time-like developable ruled surface
such that its base curve is the curve p(#)?”.

The answer is, again, YES. In fact from (38), we have

Py ¢*sinf
oo — —tanf, ¢"=4\/P?+ P} and 0" = —
P, ¢cosd anf, ¢ 1+ an
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Now we need to determine ¢(z). The solution of the linear homogeneous
differential equation (42) gives tanh ¢(¢). This solution includes an integral
constant, therefore we have infinitely many developable ruled surfaces such that
their base curve is p(z).

It is to be noted that ¢*(7) has two values; when we use the minus sign, we
obtain the reciprocal of the ruled surface x(¢) obtained by using the plus sign for
a given integral constant.

In the following example, we obtain an application about two-component
WKI equation and inextensible flows of a developable timelike ruled surface.

Lemma 3.1:
m(t, u, v) = p(t, v) +ux(t, v),

|x| = 1,x" # 0 and (x, X, p') =0, and let 7 be the arc-length of p. Then the first
fundamental form of m(¢, u, v) is

E=<m;, m>=14+2u<p, x’>—|—u2|x’|2,
F=<m; m,>=<p, x>,
G=<my,, m, >=1.

We now make precise the notion of an inextensible evolution of a surface by
imposing appropriate constraints on its first fundamental form.

. . Om . . . .
A surface evolution m(z, u, v) and its flow —— are said to be inextensible, if
its first fundamental form {E, F, G} satisfies

OE_OF_0G
dv v v
The following theorem is an immediate consequence of Lemma 3.1.

Theorem 3.1: Let the flow m(7, u, v) be as in Lemma 3.1. Then m is inextensible
if and only if

0 / /78 /278 /
E(p?x>_5|x| _av<pvx>'

Example 2:

Consider the curve

p(t) = (t+1, 2t, 31)
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Then,
t+1
tan9:—2Ll, ¢" =+V52 +2t+1 and 0" = =31
and
dor_ o 2 N 5t+1
= — B e ———— 1 —_—
dt T dt 522+ 2141 d V52 +2r+1

Substituting these values into (42), we obtain

1 t+1\?
6z<z—%> V52 21+ 1

(1) - (1 N <t+1>2> (101 + 2)

42

=0

t
" (+1)7)
1+ 17 (107 +2)

Lo+,
J 0 2<Z_F> (57 4+2t+1)

The solution of this differential equation (using the mathematical program
MAPLE) is

y =tanh¢
43)
3VS52 42t + 1 , s 1 (
— w (— In(5¢ +2t+1) + arctan(f + 5) +C

Hence, the family of the developable time-like ruled surfaces is given by

m(t, u) = p(t) + ux(t)

P P
=(t4+1, 2t, 31) + u<—¢—icosh o, ¢—icosh ¢, sinh ¢>
: : Py Py .
where x(1) is a space-like vector and x(¢) = (— o cosh ¢, > cosh ¢, sinh ng) .
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Fig. 4.3 Fig. 4.4

The graph of the developable time-like ruled surface, given by (43), for C =0
indomain D : {-3<7<3 —4<u<4}isgivenin Fig. 4.3 and Fig. 4.4.

In this section, we obtain the multi-component WKI equation of hyperbolic
type by considering motion of curves in the Minkowski space. We denote the
three-dimensional Minkowski space by M?>. The Serret-Frenet formula in M? is

5 T 0 x O T
— | N|=]|-x 0 7 N
s

B 0 7 B

and wehave 7. T=1,NN=—-1,B.B=—1.

The corresponding geometric quantities in M3, using the graph of the curve,
are given by

ds = gdx,

T = (l,ux,vx)/g,

N = (txttyy — VyVx, (1 = V2 )ty + ViV, (14 62 )V + Vitiytiy) /gh
B = (uxvyx — Villxx, —Vxx, —Uxx) /B

k=h/g,

T = (Vxxuxxx - uxxvxxx)/h2

where
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g = V(I 4+u2 -2,
h = \/(u%x - V.2xx) - (”xuxx — VxVxx, (uxvxx - quxx)z

The curve motion flow is governed by

1
v = —EHZT— ksN — KTB.

Firstly, solving the system we obtain the two-component WKI equation,

Uxx
w+ |——— | =0
o+ - )Y
i N , (44)
VX’X
v+ | — =0
e -

We call the system (44) to be the two-component WKI equation of hyperbolic
type. Now, we consider

P P
m(t,u)=(t+1-— u¢—fcosh¢, 2t + qu)—icoshqﬁ, 3t + usinh ¢)

or

m(t, u) = (x(u, t), y(t, u), z(t, u))

2

the time-like curve, and we obtain x*> + y? — z> = u>. A graph of curve on this

surface is
~v = (x, sinh(x — at), cosh(x — at)).

This equation is the orbit curve equation in special relativity. The space of the
theory of special relativity is the Minkowski space. Let

v =(x, u(x, t), v(x, ).

denote the curve equation in M>. By using a = 2-3/2, this curve can be easily
shown to satisfy the WKI equation. After necessary calculation, we obtain
g=2'"2 h=2, k=1/2and7T=—1/2and

B.

V== T—

A=
FNgp-
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CONCLUSION

As it is well known, if the arc length of a curve is preserved, then the flow of
curve is inextensible. Physically, inextensible curve and surface flows lead to a
motion with no strain energy. Zhang & Hou (2007) discussed three-component
WKI equation and curve motion flow in Euclidean & Minkowski spaces. Kwon
et al. (2005) gave inextensible flows of curves and developable surfaces. Latifi
and Razavi (2008) obtained inextensible flows of curves in Minkowskian space.
Abdel-All and Abd-Ellah (2003) gave deformation of a kinematic surface in a
hyperbolic space. As a final word we can say that, in this paper, we discuss a
connection between two-component WKI equation and inextensible flows of a
developable timelike ruled surface.
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