THE JOURNAL OF THE UNIVERSITY

OF KUWAIT (Science)

VOL. 2, 1975

CONTENTS

MATHEMATICS	Page
Salah Ahmad and Adel A. K. Yaasseen. On convergence in the ultra-real	
space	1
M. F. K. Abur-Robb. A note on energy balance and electron runaway in a	
uniform fully ionized plasma	5
Maher M. H. Marzuk. L-Convergence of certain cosine sums	9
F. A. Musa. On the convergence rates of variational methods	13
Saad Mohamed. On PCI rings	21
Botany	
M. S. Abdel Salam and A. Diab. Bacterial contamination in different hospitals of Kuwait: A preliminary survey and some suggested	
activities	25
Hazim S. Daoud. The genus Plantago in Kuwait	35
Ali Hashim Al-Mousawi and Falah A.G. Al-Naib. Allelopathic effects of	
Eucalyptus microtheca F. Muell	59
A. F. Moustafa. A preliminary annotated list of fungi from Kuwait	67
Ecology	
Reyadh Al-Naqeeb. Ecology and Man's environment	89
ZOOLOGY	
S. M. Eissa and S. El-Ziady. Studies on the water content of the various tissues of the Arabian camel, Camelus dromedarius in Kuwait	101
S. M. Eissa, S. M. El-Ziyadi and M. M. Ibrahim. Autecology of the jerboa,	
Jaculus jaculus inhabiting Al-Jalia desert area, Kuwait	111
S. M. Eissa and Y. S. El-Assy. Record of certain reptilian species found in	
Kuwait	123
Shlemon E. S. Al-Barwari and R. F. Abdel-Fattah. The effect of insulin on	4 457
carbohydrate metabolism in the liver fluke, Fasciola gigantica	147
Kamal S. Al-Badry and R.F. Abdel-Fattah. Haematological studies on some reptiles from Kuwait. Part II. Some corpuscular constants,	
blood glucose, total plasma protein and electrophoretic examination	
of blood proteins of the lizard Uromastix microlepis	153
Kamal S. Al-Badry. Haematological studies on some reptiles from Kuwait.	
Part III. Some corpuscular constants, blood glucose, total plasma	
protein and electrophoretic examination of blood proteins of the	
lizards Acanthodactylus scutellatus and Eremias brevirostris	159
A. H. Helmy Mohammed and Muna M. S. Al-Taqi. A general survey of blood parasites of birds from Kuwait	167
DIOUU DALABICES UL DILUS LLUIII LLUWAIL	101

CONTENTS (Cont'd.)

Geology	Page
Adel M. Refaat. On the mineralogical classification of Zaker granitic rocks of Zanjan area, western part of Tarom district, northwest Iran	179
Mohamed A. Essawy. Granitic rocks north of W. Gemal, Eastern Desert, Egypt.	189
Adel M. Refaat and Mahmoud L. Kabesh. Remarks on the petrochemistry of the granitic rocks of Umm Naggat, Eastern Desert, Egypt.	195

ON CONVERGENCE IN THE ULTRA-REAL SPACE

SALAH AHMAD AND ADEL A. K. YAASEEN

Department of Mathematics, University of Kuwait

Abstract. The purpose of this paper is to study convergence in the Ultra-real Space *R with respect to a suitable topology Specifically we will investigate the relationship between the usual convergence in R of a real sequence and the convergence in *R of its extension (in some way) to *R.

1. PRELIMINARIES

The definitions and notations used in this work are in general those of Bourbaki (1955) and Robinson (1970).

Let u be a fixed ultra-filter on N containing the Fréchet filter. Let \mathcal{P} be the real algebra of all real sequences, addition, multiplication, and multiplication by scaler being defined by:

$$(f+g)_{p} = f_{p} + g_{p};$$

 $(f \cdot g)_{p} = f_{p} \cdot g_{p};$
 $(\lambda f)_{p} = \lambda \cdot f_{p}.$

The relation " \sim " on \supset defined by $f \sim g$ if there exists $U \in u$ such that $f_U = g_U$, is an equivalence relation on \supset . The equivalence class of $f \in \supset$ will be denoted by *f. It is easy to verify that \sim is compatible with each operation on \supset . Denote by \ominus the equivalence class of the O-sequence. \ominus is two-sided ideal of \supset and

$$f \sim g \iff f - g \in \theta$$

By extending, in the usual way, the operations on $\mathscr I$ to the quotient $\mathscr I/\theta$, we obtain an algebra (Bourbaki 1955, p. 104) which is in fact a field. This algebra will be denoted by * R. The order relation \leqslant on $\mathscr I$ defined by

$$f \leqslant g \Leftrightarrow \forall n \in N: f_n \leqslant g_n$$

can be extended as usual to *R. *R, ordered by this extended order relation, is an ordered algebra (ordered field of course). It is called the ultrareal space. Denote by ϕ the mapping a \rightarrow (a, a,...) from R to \varnothing , and by π the canonical mapping from \varnothing to *R. It is easy to see that $\pi \circ \phi$ is an isomorphism between R, as an ordered

field, and $\pi \circ \phi$ (R). So we can identify R with the subfield $\pi \circ \phi$ (R) of *R.

Now let Nobe the subset of J defined by

$$n\!\in\!\mathscr{N} \Longleftrightarrow \forall\; p\in N\;:\;\; n_p\in N$$

 π (\mathcal{N})will be denoted by * N and its elements will be called ultra-naturals.

2. *R AS A GENERALISED NORMED SPACE

Let *f \in *R, $f \in$ *f. It is easy to show that * f is independent of our choice of $f \in$ *f. So |*f| = *|f| is well defined. The mapping *f \rightarrow *f from *R into *R has the following properties:

(I)
$$| *f | > \theta$$
. and $| *f | = \theta \iff *f = \theta$;

(II)
$$| *f + *g | \le | *f | + | *g |$$
:

(III)
$$\forall \lambda \in R : |\lambda *_f| = |\lambda|.|*_f|.$$

These properties, being similar to those of a norm, it is natural to call |*f| an ultra-norm.

An element *f \in *R will be called initesimal if $|*f| \leq a$, for all a > 0 with \in R. The set of all infinitesimals will be denoted by \mathcal{I} . *f is called finite if there exists $a \in$ R such that $|*f| \leq a$. *f is called infinite if it is not finite. We note that |*f| defines a uniformity on *R. We shall consider always this uniformity and the topology induced by it.

3. THE EXTENDED SEQUENCES

If $f \in \mathcal{J}$, $*n \in *N$; $n, m \in *n$, we can verify that $f \circ n$, $f \circ m$ are defined in some set $U \in u$. If we define arbitrarily $f \circ n$ and $f \circ m$ outside U, we have $f \circ n$, $f \circ m \in \mathcal{J}$ and $f \circ n \sim f \circ m$, so that $*(f \circ n) = *(f \circ m)$. If we denote $*(f \circ n)$ by f_{*n} then the mapping $F \colon *n \to f_{*n}$ from *N into *R is said to be the extended sequence of f. It is shown (Robinson 1970) by logical methods that f converges in the usual sense in R iff for all infinite ultra-naturals *n, *m we have $f_{*n} - f_{*m} \in \mathcal{J}$ We prove directly the following:

Theorem

Let f be a real sequence. Then the following four statements are equivalent:

- (a) F is a Cauchy extended sequence;
- (b) f_{*n} f_{*m}∈ \(\mathcal{T}\) for all infinite ultranaturals *n, *m;
- (c) f is convergent in R (in the usual sense);
- (d) F is convergent in * R.

First we will prove the following lemma.

Lemma

If f is a real sequence and *n, *m are infinite ultra-naturals such that $f_{*n} - f_{*m} \notin \mathcal{I}$ then for any *n₀ \in *N, there exists ultra-naturals *n', *m' > *n₀ such that $f_{*n'} - f_{*m'} \notin \mathcal{I}$.

Proof:

Let *n, *m be infinite ultra-naturals such that $| f_{n} - f_{m} | > \varepsilon$ where ε is a positive standard real. Let $n \in n$, $m \in m$ and $n \in n$. Then there exists some $U \in \mu$ such that:

$$\begin{split} &\mathbf{i} \in \mathbf{U} \implies \mathbf{n_i}, \ \mathbf{m_i}, \ \mathbf{n_i^o} \in \mathbf{N} \ \text{ and } \left| \mathbf{f_{n_i}} - \mathbf{f_{m_i}} \right| > \epsilon \ . \end{split}$$
 Since *n and *m are infinite ultra-naturals, then we can choose k' \in \mathbf{U} \text{ for any } k \in \mathbf{U} \text{ such that} \\ &\mathbf{n_{k'}} > \max\{\mathbf{n_k}, \mathbf{n_k^o}\} \ \text{and } \mathbf{m_{k'}} > \max\{\mathbf{m_k}, \mathbf{n_k^o}\}. \end{split}

Then we have obviously $\left| f_{n_{k'}} - f_{m_{k'}} \right| > \epsilon$.

Define n', m' by $n'_k = n_k$, $m'_k = m_k$ on U and arbitrarily on U^c . Now if *n', *m' are defined by n', m' respectively, then we have:

*n', *m' > *n₀ and
$$|f_{*n'} - f_{*m'}| > \varepsilon$$

Now we present the proof of the theorem.

$$(a) \Rightarrow (b)$$

If F is a Cauchy extended sequence, then for the infinitesimal $*\nu > \theta$, $\exists *n_0$ such that:

*n, *m > *n_o \Rightarrow $|f_{*n} - f_{*m}| < *\mu$. Now suppose *n, *m are infinite ultra-naturals such that $|f_{*n} - f_{*m}| > \epsilon$ with ϵ a positive standard real. Hence by the lemma, there exists *n', *m' > *n_o such that $f_{*n} - f_{*m} \notin \mathcal{I}$; a contradiction.

$$(b) \implies (c)$$

Suppose to the contrary that f is not convergent then f is not a Cauchy sequence (in the usual sense). Hence $\exists \ \epsilon > 0$ (with $\epsilon \in R$): $\forall \ p \in N, \exists \ n, \ m > p \ such that <math>|f_n - f_m| > \epsilon$.

This means that there exist two infinite increasing sequences of real naturals, say (n_p) and (m_p) , such that $|f_{n_p} - f_{m_p}| > \epsilon$ for all n_p and m_p . Let *n, *m be defined by (n_p) and (m_p) respectively. Then *n, *m are obviously infinite ultra-naturals and $|f_{n_p} - f_{n_p}| > \epsilon$; a contradiction.

(c)
$$\implies$$
 (d)

Let f be convergent to $d \in R$ and $\bullet \mu$ be an arbitrary positive infinitesimal. Let $\mu \in \bullet \mu$ with $\mu_k > 0$ for all $k \in N$. Now for all $k, \exists n_k : p > n_k \Longrightarrow \big| f_p - d \big| < \mu_k$. Let $\bullet n_0$ be defined by (n_k) . Then obviously $\big| f_{\bullet n} - d \big| < \bullet \mu$ for all $\bullet n > \bullet n_0$.

$$(d) \implies (a)$$

Obvious.

REMARKS

- (1) This theorem shows that f and F converge or diverge together. Moreover, they have the same limit in the case of convergence.
- (2) Though *R does not have the Dedekind property, it does have the Cauchy completeness property in the sense of this theorem.

REFERENCES

Bourbaki, N. 1955. Eléments de mathématique, Livre II, Actualités scientifiques et industrielles, Hermann et Cie, Paris.

Bobinson, A. 1970. Nonstandard Analysis, North-Holland Publishing Company, Amsterdam.

(Received 13 April 1974)

حول التقارب في الفضاء فوق الحقيقي

صلاح احمد وعادل ياسين قسم الرياضيات بجامعة الكويت

خلاصية

في هذا البحث تمت دراسة التقارب في الفضاء فوق الحقيقي ح* تبعا لطبولوجيا مناسبة . وامكن التوصل ، بوجه خاص ، الى العلاقة ما بين التقارب الاعتيادي لمتتالية حقيقية في ح والتقارب لامتدادها (بطريقة ما) في ح*.