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ON CONVERGENCE IN THE ULTRA-REAL SPACE

SALAH AHMAD AND ADEL A. K. YAASEEN

Department of Mathematics, University of Kuwait

Abstract.
with respect to a suitable topology

The purpose of this paper is to study convergence
Specifically we will investigate the relationship between the

in the Ultra-real Space *R

usual convergence in R of a resl sequence and the convergence in *R of its extension (in some

way) to *R.

1. PRELIMINARIES

The definitions and notations used in this
work are in general those of Bourbaki (1955)
and Robinson (1970).

Let # be a fixed ultra-filter on N containing
the Frechet filter. Let -/ be the real algebra of
all real sequences, addition, multiplication, and
multiplication by scaler being defined by:

(f+g), =fp*teps
(f.gp =fp. Bp:
( XDp = x. f,.

The relation “ © ” on ., defined by f ~ g if
there exists U € ¥ such that fU =8y is an

equivalence relation on .,. The equivalence class
of fe./ will be denoted by *f. It is easy to
verify that ~ is compatible with each operation
on 4. Denote by -0 the equivalence class of the
O-sequence. g is two-gsided ideal of J and

fo g f-ge 6

Ey extending, in the usual way, the opera-
tions on .J to tihe quotient /5 , we obtain
an algebra (Bourbaki 1955, p. 104) which is in
fact a field. This algebra will be denoted by * R.
The order relation < on .7 defined by

f<ge» Vn e N: fng gn

can be extended as usual to *R. *R, ordered by
this extended order relation, is an ordered algeb-
ra (ordered field of course). It is called the ultra-
real space. Denote by ¢pthe mappinga — (8, a,...)
from R to .7, and by m :he canonical map-
ping from .5 to * R. It is easy to see that n.¢

is an isomorphism between R, as an ordered

field, and To ¢ ( R). So we can identify R with
the subfield "o ¢ ( R) of * R.

Now let_# be the subset of ./ defined by
ne.Nt «VPeN : np €N

1 (_4")will be denoted by * N and its elements
will be called ultra-naturals.

2. *R As A GENERALISED NORMED SPACE

Let *f € *R, f € *f. It is easy to show that
* f is independent of our choice of f € *f, So
|*¢| = #|£]|is well defined. The mapping
*f — *f from *R into * R has the following
properties:

(D |*]|>6.2nd [*f| = 6 <= *r=-9;
a o5+l < o]+ ol
(m Vier:|A#*s]|=|x].|*].

These properties, being similar to those of a
norm, it is natural to cail I*f I an ultra-norm.

An element *f € *R will be called inite-
simal if I"’fl < a, for all a > O with € R.
The set of all infinitesimals will be denoted by. 7.
*f is called finite if there exists a € R such
that |*t | < a. *f is called infinite if it is not
finite. We note that |*f| defines a uniformity on
*R. We shall consider always this uniformity
and the topology induced by it.
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3. THE EXTENDED SEQUENCES

If feJ, *n € *N

verify that fon, fom are defined in some set
U € 4 . I we define arbitrarily fon and fom

outside U, we have fon, fom € ./ and
fon~ fom, so that *(fon) = *(fom). If
we denote *(fon) by ‘f"n then the mapping
F: *n f‘n from * N into * R is said to be the

extended sequence of f. It is shown (Robinson
1970) by logical methods that f converges in the
usual sense in R iff for all infinite ultra-naturals
*n, *m we have £y, ~ f,mej-— We prove directly

the following:

; n, m € *n, we can

Theorem

Let f be a real sequence. Then the following
four statements are equivalent:

(a}) F is a Cauchy extended sequence;

(b) fay ~ fape. for all infinite ultra-
naturals *n, *m;

(¢) f is convergent in R (in the usual

sense) ;

F is convergent in * R.

(D

First we will prove the following lemma.
Lemma
If f is a real sequence and *n, *m are infinite
ultra-naturals such that f, - f.m¢.7then for

any ’no € ®N, there exists ultra-naturals

*n', *m’'> *n,such thatf, , - ﬁ.m.qtf
Proof:

Let *n, *m be infinite ultra-naturals such
that | fap — f.m| > € where £ is a positive

standard real. Let n € *n, m € *mand n ¢ 'no.

Then there exists some Ue U such that:

i€U = n;, m;, ny €N and|fni fmi|>g.

i 1)
Since *n and *m are infinite ultra-naturals, then
we can choose k'€ U for any k € U such that

(o 0
n > max{nk ,nk}and m.> max{m, o }.

Then we have obviously fnk’ - fm >€.
kl

k
and arbitrarily on U°. Now if *n, *m’ are defined

Define n’, m byni(= nsmyo=my on U

by n', m' respectively, then we have:

*n', *m' > "no and f,n- - f,m' >€

Now we present the proof of the theorem.

(a) = (b)

If F is a Cauchy extended sequence, then for
the infinitesimal *uv>p ,3 *n, such that:

*n, *m > "noalf.n = .mi < *u .
Now suppose *n, *m are infinite ultra-naturals
such that |fa, ~ famm|>€ With € a positive
standard real. Hence by the lemma, there exists
*n', *m' > *n, such that f., - f,mqé
tradiction.

(b) = (¢)

.7; a con-

Suppose to the contrary that f is not conver-
gent then f is not a Cauchy sequence (in the
usual sense). Hence.d € >0 (withe € R):
Vpe N, 3 n m>psuchthat|f, —f |>¢.

This means that there exist two infinite increas-
ing sequences ¢i real naturals, say (np) and

(mp) , such that|fnp—fmll)>€for all nyand my,

Let *n, *m be defined by (np) and (mp) res-

pectively. Then *n, *m are obviously infinite

ultra-naturals and
diction.

() = ()

[ f.n - f.m‘>e; a contra-

Let £ be convergent tod € R and * U he an
arbitrary posicive infinitesimal. Let 4 €% J{ with
Vg > O for all k € N. Now for all k, H'nk
p> nk=>|fp - d|<uk . Let *n, be defined
by (ny). Then obviously | £, -d|<*¥ for all
*n > *n,.

(d) = (a)
Obvious.
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REMARKS REFERENCES

(1) This theorem shows that f and F converge Bourbaki, N. 1855. Eléments de mathématique, Livre II,
. Actualités scientifigues et industrielles, Hermann et

or diverge together. Moreover, they have Cie, Paris.
the same limit in the case of convergence. Robinson, A. 1970. Nonstandard Analysis, North-Holland

Publishing Company, Amsterdam,
(2) Though *R does not have the Dedekind

property, it does have the Cauchy com-
pleteness property in the sense of this
theorem.

(Received 13 April 1974)
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