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ABSTRACT

This paper generalizes the Cauchy~Riemann equations for complex differentiable functions to
functions over certain n-dimensional commutative algebras over C with identity. Since the
corresponding linear first order partial differential equations depend, a priori, on the basis
chosen, this paper shows that in fact the set of functions which are differentiable is independent of
the choice of basis. In the process, this paper generalizes to higher dimensions the notions of real
and imaginary parts and of conjugation and the relationship between conjugation and
multiplication for algebras over C2.

1. INTRODUCTION
Closely related to the complex number field
={x+iy|x,yeRand i*= ~1}
is the commutative algebra with identity
K= {x+ky|x,yeRand k= +1}.

The algebra K plays an important role in the geometry of special relativity (see e.g.
Yaglom 1979). These two algebras have natural matrix representations, i.e. circulant
matrices for K and skew-circulant matrices for C. The matrix representations induce
natural multiplications on R?. As a result of these representations, a natural notion of
differentiability for functions arises. It turns out that such a function is differentiable if
its Jacobian matrix lies in the corresponding algebras. In this paper, we generalize
these algebraic structures to higher dimensions and study the induced notions of
differentiability. This will yield interesting product structures and differentiability
structures on R*". Even though these algebras on C” (or R?”) are distinct, we will show
that they have the same set of differentiable functions. We shall also generalize to
higher dimensions the relationship between the multiplications of C and K which were
pointed out to us by L. Kauffman of Illinois—Chicago (private conversation).
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2. INTRODUCTION TO ALGEBRAS

Let F denote either the real number field R or the complex number field C. One can put
two natural algebraic structures on F? as follows: let z; = (x,, y,) and z, = (x5, },)
where x,,x,,y,,y,€F. For both algebras, define addition and conjugation as usual

Zyp+ 2= (X + X2, ¥ + 1)) (n
and
(xi’yi) = (xi’ —'yi)~ (2)
Define two multiplications on [F2
21802, = (X1 X3+ ¥ V2, X V2 + X3 ¥y) (3)
and
2 Az, =X — Py va, X ¥t X 1) 4)

If F = R, then (4} is the usual multiplication for complex numbers x, + iy, and x, + iy,
where 2= —1. Equation (3) is the multiplication on R? induced by
{x; + ky,)(x, + ky,) where k* = + 1. We denote this second algebraic structure on R?
as . Yaglom (1979} uses this structure heavily in a geometry of special relativity.
Leisenring (1979) makes intensive use of both algebraic structures on the bicomplex
plane, where F = C. Indeed, (R?, +, A,) and (R?, +, A,) are not isomorphic, since the
latter is a field but the former is not. However, Leisenring (1979) demonstrates that
(C% +,A) and (C?, +,A,) are isomorphic. (F?, +,A,) and (F?, +,A;) are both
isomorphic to cerfain matrix algebras. (F2, +,A,) is algebraically isomorphic to

Xy W
-V X

the subspace of 2 x 2 skew-circulant matrices under matrix addition and
multiplication. (F2, +, A,) is algebraically isomorphic to

Xy W
Yi X

the subspace of 2 x 2 circulant matrices under matrix addition and multiplication. For
more background on skew-circulant and circulant matrices, see Davis (1979) or Wilde
(1983, 1986).

A special notion of differentiability for functions on C or K is induced by these
matrix structures. A function f on C is C-differentiable (i.e. holomorphic) if its
Jacobian derivative on R?

(x,y1)€ [FZ},

(XI’)"I)E[FZ},

is the corresponding algebra of skew-circulant matrices. This is Leisenring’s approach
to the Cauchy-Riemann conditions in C?: u,=v, and u,= —v,. Furthermore,
Leisenring (1979) proves that u and v are C-differentiable if and only if

u(x, y)= %[f(x +iy)+glx —iy)]
and

1
vix,v) = % [fx+iv)—glx—in],
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where f and g are holomorphic functions on C. Wilde (1983) demonstrates the same
principle for K-analytic functions: a function K — K is I{-differentiable if its Jacobian
derivative as a map: R?>— R? is a circulant matrix. This time, the analogous
Cauchy-Riemann conditions are: u, = v,and u, = v,. Wilde (1983) proves that u and v
are differentiable in the natural (C2, +,A,) structure if and only if there exist C-
holomorphic functions f and g from C to C such that

1
u(x, y) = 3 [fix+)+g0x~y)]

1
vix, V) =3 [f(x+3)—glx—»].

We now construct the natural generalizations of these facts to higher dimensions.

Let kg, ..., k,_, be any basis of C”. For example, we could take the standard basis
€y,....e,_;. Let { be the complex number 2"/, Let
n—1 n—1 n—1
x=3 xk,, v=13 wk, and z= ) zk,
h=0 h=0 h=0

be three vectorsin C", where x,, y,, z, areallin C. Foreach/=0, 1,...,» — 1,we define
an algebraic structure (C", A)) on C", ie. by

n—1 n~1n—1

X+ y= Z (X,,-}-)’;.)kha and XAy = Z Z Clhjxh.vjkh+j(modn)' (5)
h=0 h=0 j=0

Note that xAk, = x for all /.

If the base field is R, for n =2 and [ =0, (5) reduces to (3), and we have the
multiplication for K; for n=2 and =1, (5) reduces to (4), and we have the
mulitiplication for C. Notice that for I =0,

n—1 n—1{ n—1tn-1
(Z x,,k,,)A0< 2 }’jkj>= 2 2 XY kn s jumodn
Jj=0

h=0 h=0j=0

1.e. the subscripts on the k’s behave like exponents modulo ». It follows that for any
basis, (C", A,) is algebraically isomorphic to the algebra of » x n complex circulant
matrices

Xo Xy T Xy
Xn—1 Xo T Xy

Bn: . . . [(xoyxl""’xn—l)ecn
X, X, - Xo

with the usual matrix multiplication. B, is a commutative algebra with identity over C.

Proposition 1. For each [=0,1,...,n—1, (C" A)) is a commutative algebra with
identity over C.

Proof. Multiplication is commutative by a simple change of indices. We show the
associative property of A, by verifying it for the basis vectors k,:

khAl (ijlkm) = khAl [lljmkj +m (modn):l

— ‘;'lh(j + m)gljmk

__ “lthj+hm+ jmy
= kh+j+m(m0dn)

h+ (j +mi(moda)
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is equal to
(khAlkj)Alkm = [‘:lhikh +j(m0du)]Alkm

_ hjelth+ jym
=5 7% k(h+j)+m(modu)

= (U +hm +jmife

Q.ED.

h+j+m(modn)*

To generalize the complex conjugation operation (2) on F? to (C", A}), define

n—1

f(x)y= Z ;hxhkh' (6)
h=0
0 is an automorphism on (C", A;), i.e. O(x + y) = 8(x) + 8(y) and OxA,y) = 6(x)A,8(v).
Also,

O“X):n

h

-1
Z Chjxhkh (7)
=0
and 0"(x) = x.
Next we generalize Re(z) and i Im(z) to (C", A)). For h =0, 1,...,n — 1, define the
function ¢, : C" —» C" by
ln—l s
a=- Y IO ®)
ni<o

Proposition 2. 44,4, .. .,4,-; have the following properties:

(1) qn(x) = x,K,;
(i) qi = qy;
(iii) g,q;=0 for all j # h; and
n—1

(iv) Y gulx)=x.
h=0

Proof.
ln—l L
(i) qulx) ==Y {TVO(x)
n;<o
1:1*1 ) n—1 )
= Z g”’”( Z é/jmxmkm>
ni=o m=0
1n—1 n—1
= Z Z Cj(—h+mjxmkm
Nizom=0
n—1 ln~1 )
S5 e
m=0_."j=0
= x;k,,
because
}"ij SHhEm) - L oaf m=h,
n ;= 0 if m#h.
(i1) 4n(@n(x)) = gu(x,k,)
= X,k

= gu{x).
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(i) 1f j # h, ‘Ih(‘lj(x)) = ('Ih(xjkj) =0.

n—1 n—1

(iv) Y ogux) =Y x.k,=x. Q.E.D.
h=0 h=0
Let us write z, xz, for z,A,z,, the multiplication in C; and z,z, for z;A,z,, the
multiplication in . Kauffman (private conversation) showed the symmetrical
relationship between these two multiplications

1 o S

(A) 21*222“2’(2132+2122+2122‘2122)
and
(B) 2122=§(21*22+21*Zz+Zx*Zz~Zz*Zz)~

Relation (A) can be rewritten in the form
4z, —Z3—I,
2 Az, =z FF—=+=
12142 1 2 1 2

=z, Re(z,) + 2,k Im(z,)
= 0%(z;)A040(z2) + 0" (z)Ao4, (2,).
Similarly, (B) can be written as
2, Aoz, = 0%z )Aqo(z,) + 01 (2))Aq,(z5).

For n> 2, we can generalize these formulas as follows.

Theorem 1.

-1

n n—1

2 [Hh(x)AIQh(y)] = Z [qh(x)AIH"(y)] =xA 1Y,
h=0 k=0

for [=0,1,...,n—1;and [ + 1 taken modulo n.

Proof.

n—1 n—1 n—-1
Z [Bh(x)Azqh()’)] = Z [( Z Chjxjkj>Al ,\'hkh-J
h=0

h=0 j=0

n—1n—1

_ clikehf )
- Z Z (RN xj ,\ hkj +h{modn)
h=0j =0

n~{n—-1

— “(I+ 1)jh .

= Z Z < xj}hij(modn)
j=0hK=0

=xAr4 Y.

n—-1

n 20 [9n(x)A0"y)] = xA,, (y follows by symmetry because A, and A,,, are
commutative. Q.E.D.

Therefore, the formulas in Theorem 1 are the generalizations of Kauffman’s
formulas [(A) and (B)] to C” and give the relationships between the multiplications A, .
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3. IDEMPOTENT BASES

We will find it convenient to use an idempotent basis for these algebras. Each A, hasa
different idempotent basis, expressible in terms of kg,....k,_,. To form these
idempotent bases, note that by Equation (5),

koA Ak, = VPU VK for 1<j<n— L. 9)
Jtimes

and

kA Ak = ‘:(l/z)ln(ngl)ko, (10)

ntimes

where k, is the identity for A, (0 <! < n — 1}. In addition, one can easily show

(L2t~ 1) _ {1 if nisodd

S (=1" if niseven.
Now let
_ ™™ if niseven and [ is odd, )
U otherwise.
Then B" = ((/2nn=1)
1 : — G- 1)
gl )b Al gk =B k, (12)

Jtimes

1 1
(E k1>A,---A,<Ek,)=kO. (13)

ntimes

and

Motivated by Equation (8), let

1n~1 i 1 1
Engjz_‘OQ J Ekl Al Ekl

Jtimes
1 n—1 . ) . )
[ B‘JC“/ZJIJ(}“I)"Ukj’ (14)
n;=o
Then
ELAE,=E, for 0<h<sn—1; (14.1)
E AE;=0 if j#h; (14.2)
and
n—1
Z E,, =k,, the identity in (C", A,). (14.3)
B=0
Thus Eq,, ..., E,_, ;is an idempotent basis for A,. Solving fork,, ..., k,_  in Equation
(14) yields
n—1
k«=BjC"“/2)UU_” Z ChjE,,, (14.4)
5 C
h=0

for0<j<n—-1
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B i i I=1
1 if 1=0.
Equation (14) becomes Ey,=3(k, +k,), E,o =3k, —k;), Ey; =5k, —ik,), and

E,, = 3{k, + ik,). Equation (14.4) becomes ko =Ey,+E,;=E;, +E,,; and k, =
Eo, —E,,=(E,, (see Leisenring 1979).

As an example, in C2,

Now we want to derive elements Ag, Zy,...,4,_, € C such that
n—1 n—1
Y xk= Y ALE,. {15)
i=o h=0

To do so, by (14.3) and (14 .4),

PRRPLIRIPEY

-1 n-
Z {z BJ — (G- D +hjy ]El-

=0 0

Thus

n—1
Jp= Y BICTWAMGS DR (0 <hgn 1), (16)

i=o0
Solving for xq, xy,...,X,_, results in

nl

x;= BB 0l Z M 0<j<n—1). (17)

In C?, Equations (16) are /., = x, + x, and 4, = x, — x,,if[=0; 1, = x, + ix, and
A1 =xq —ix(, if I=1. Also, Equations (17) are x, = 5(4q + 4,) and x; = 5(4, — 4,) if
I=0;xq=%(/o + 4,) and x, = (1/2i)(4, — 4,) if I = 1. J, and A, are the eigenvalues of
Xo X1}. . . . . .
(M Xo) if { = 0. See Leisenring (1979) for an extensive discussion about the geometry
of these facts in C2.
Using Equation (15), we show the following.

Theorem 2. (C", A)) is isomorphic to (C", Ay) for 1<i<n— 1.

Proof. We use the correspondence

n—1 n—1

Y iEny— Y LE.
K=0 H=0

By Equations (14.1) and (14.2), if A}, 4},..., A}, eC, then

n—1 n—1 n—1 .
(Z ’:'hEhI)Al( Z )~;1.Em>= z flh/l;l.Em»
h=0 h=0 h=0
Also,
n—1 n—1 n—1
( 5 }t,,E,,l) +( 5 A,}E,,,) 'S G+ A
h=0 h=0 h=0

Since the last two equations also hold for | = 0, the correspondence above preserves +
and A,. Q.ED.
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(C", A) 1s isomorphic to (C”, A,), and (C", A,) is isomorphic to B
complex circulant matrices. Thus (C", A;) is isomorphic to B,.
Let (C", +, ) be any algebraic structure on C" which has an idempotent basis
Eo.E,....,E,_, so that

the set of n x n

n?

El=E, for 0<h<n—1; (18.1)
EE, =0 if j#bh; (18.2)
and
n—1
Y E, =1 (18.3)
h=0
I being the identity for multiplication.
Now define n more bases ko, ky,,... . k,_, (0<I<n—1)via (14.4), ie.
n—1
ka — Bjc-(l,/Z)ljU—l) Z :hth. (19)
h=0 ’
Then kg, =1 (by (18.3) and (19)), and
kHlij = ‘:mjku +jd (20)
where H + is taken modulo n. Thus we have identified the idempotent bases and
obtained n different bases kg ,,...,k,_, that satisfy Equation (5), identifying the
multiplications Ay, A,,...,A,_, as one, namely . . This all follows from Theorem 2.

The fact that

n—1 n—1
k,,,( 2 xfkﬂ>: 2 kg,
i=0 j=0

where H + j 1s taken modulo n and 0 < H <n — 1, gives us a matrix representation of
(C", +, ), namely

[x, k%, ...k, x]7 1)

represents » 123 x;k;. If =0, the matrix representation is the algebra of circulant
matrices. The quantity 4, given by Equation (16) is an eigenvalue of (21) with

T
Yi={(Vous Vinr- s Va1

where v, = B/{ 7PN DM for 0 <j < n — 1, as the corresponding eigenvector.

4. DIFFERENTIABLE FUNCTIONS ON THE CIRCULANT ALGEBRA

In this section, we define multiplication on a basis of any commutative algebra over C
and find its matrix representation, giving the algebra of circulant matrices as a special
case. A function on the algebra is called differentiable if the transpose of its Jacobian is
in the same form as the matrix representation of the algebra. The first-order, linear,
partial differential equations the function satisfies are called CR conditions, since they
generalize the classical Cauchy-Riemann conditions. We find the CR conditions for
arbitrary bases of the circulant algebra and solve them, showing that each basis
generates the same set of differentiable functions on B,. Then we show that this
differentiation on B, satisfies the usual properties: linearity, the product rule, and chain
rule.
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Once we do this for all bases of B,, we look at the special uses of the basis
Ko, Ky - - -, K, . finding the CR conditions and solving them as special cases.

4.1. GENERALIZING THE CAUCHY-RIEMANN CONDITIONS

Let 7, denote an n-dimensional commutative algebra with identity / over C with a
basis {ag,d,,...,a,_,} where ay =I. Let the multiplication of ., be defined by
n—1
aay= Y cha, for 0<s<n—1 and O0<h<n-—1 (22)
m=0
where the m in ¢7, is merely a superscript and ¢, € C for all s, h, and m. Let the typical
element of .</, be

n—1

X=3 xa, (23)
W=0

where xg,x,...,%x,_, €C.
Then by Equation (22),
n—1
a, X = )Y x,aa,
h=0

n—~1 /n—1 (24)
=3 ( > C;';x,,)am.
m=0 \h=0
A matrix representation of the algebra .<Z, is obtained by letting the row s be the
coeflicients of ug,a,,...,a,_, in a,X given by Equation (24). If x, = 1 and x; =0 for
j# h, then the matrix represents q,.

A special case of .o/, is the algebra for which a,a, = a, 4 ymesr Where aq = I. If we let
a, = K, then a, = K", the hth power of K, and K" = I. The matrix representation is an
n % n complex circulant matrix

Xo Xy Xz T Xy
Xp—1 Xo Xy T Xy 2

X = . (25)
X, X3 X3 Tt X

K" is represented by the circulant matrix with x, = 1 and x;=0forj# h. From now
on,let {{,K,K? ..., K" !} be thebasis of B,. Then by Equation (25), X = dnTox K

Let ug,uy,...,u,_, be functions: C" — C. Now let
—-— - ~ ]
Cug Cuy @Z Ou, _ 4
Cxp Cxg Ox, x,
Cug Ou, Ou, du,
JT=1{ &x, x, 0x, ox; . (26)
Cug Cu, Cuy Cu,
axn ~1 CXp—1 OXy -1 axn - ,I_J
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This matrix is an element of the matrix representation of .</, if and only if

ou,,

n--1

axs :hz ‘

:
m U for O<m<n—1 and 1<s<n—1. 27)
=0 5x0

Since Equations (27) are like the Cauchy—Riemann conditions, we call them the CR
conditions. Indeed, they reduce to the Cauchy-Riemann conditions when n = 2, and

ag=1and a, =i

In the case of circulant matrices, the CR conditions are

au"”:% for 0<s<n—-1, 0<h<gn—1,

0 a
and where h+s is taken modulo .
4.2. AN IDEMPOTENT BASIS
The set B, has an idempotent basis {E,, E,,...,E,_,} where if { = e*™", then
111—1 )
E;=- 3% {TWK" for 0<j<n—1. (29)
Myzo
As discussed in Section 3, this basis has the properties that
E}=E; for 0<j<n—1; {30a)
EE;=0 if s#j; (30b)
n—1
Y E =1 {30c)
j=0
and
n—1
Kf= %Y ME; for 0<h<n-—1. (30d)
j=0
Let
n—1
Ay=3 Mx, for 0<j<n—1. 31)
h=0
Then
R ‘
x,=- Y ("M} for O<h<n-—1, (32)
n ;=
and
n—1 n—1
Y x, K= ME =X. (33)
h=0 ji=0

AosA4s- . » 4, are the eigenvalues of the circulant matrix X, given by Equation (25).

Letag,a,,. ..

,a,_; where a, = I be an arbitrary basis of B, with the relation (22).

Then there exists an invertible matrix (d;,) with d,, € C such that

n—1
ay=Y dE; for O0<h<n-—1
ji=0

34
and d;p=1 for 0<j<sn~—1. 34)
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Then aa, =Y 123 d;d,E; for all s and h. But by Equation (22),

js*jh
n—1 n—1 n—1
aay,= Y Chan= 3 S,,(Z d, E>

m=0 m=Q j=0

n—1 n—1
= Z Ej( Z C:-';-djm)
i=0 m=0

So, since Eq, E,,...,E,_, are a basis,
n—1
dodyp= Y cpd,, for 0<j<n—1,
m=0Q (35)

0<s<n—-1, and O0<h<gsn-—1.

Given the matrix (d;,), we can use Equations (35) to solve for the c{’s since (d,) is
invertible.

4.3. SOLUTIONS OF THE CR CONDITIONS

Theorem 2 in Wilde (1983) stated that if uy, u,,...,u,_, are entire functions: C" — C
that satisfy Equations (28), then there exist entire functions f, f1,....f,-:C>C
such that ugy, u,,...,u,_, are of the form
1= 1 . n—1 )
uhzvzg‘“f(ZC”x,) for O0<h<gn-1. (36)
hj=o 1=0

We can also prove that if uy, u,, ..., u, , are given by Equations (36), then they satisfy
Equations (28). We now generalize these results for all bases of B,.

Theorem 3. Let the d,,’s and the cj’s be related by Equations (35). Let

Ug, Uy, ..., U,_, be entire functions: C"— C. Then ugy, u,,...,u,_,; satisfy the CR
conditions if and only if there exist entire functions fg, f,,..., f,-; : C — C such that
n—1 n—1
y dj,,u,,zfj(Z dﬂx,) for 0<j<n—1. 37
h=0 =0
Proof of sufficiency. Taking &/0x, of both sides of (37), we get
n—1 au , n—1
¥ djha—)C“:fj( S dj,x,> (38a)
K=0 0 1=0

because d;jp=1for0<j<n—1. Multiplying both sides of (38a) by d,; gives us

Z Js jh ij ( i djlx|>' (38b)
1=0

By Equation (35),

n—1 6“,' a—-1 /n—~1 . auh
2, il o, = < 3 C“'d""’> dxq

h=0 \m=0

n—1 n—1 au
=Y d, e —1) (38¢
5 o £ n )

m=0 h=0
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Taking d/dx, of both sides of (37) and changing the summation index from A to m
results in
n—1 aum n—1
Z djmg:djsfj,( Z dﬂx,)‘ (38(1)
m=0 s 1=0
So by (38b), (38c), and (38d), we get

n—-1 a n—1 -1 ;!
Y dpy o= ¥ djm(zc;"hﬂ) for 0<j<n—1. (38
ox, .o X

n
m=0 s = h=0 0 0

Since (d;,) is an invertible matrix, Equations (38¢) imply the CR conditions.

Q.E.D.
Proof of necessity. Let
n—1
v;= 3y dju, for 0<j<n—1 (39)
m=0
and
n—1
A=Y dx, for 0<t<n—1. (40)
s=0

We need to prove that v; is a function of 4; only.
Let D denote the inverse of the matrix (d;,). Then Equations (40) imply that

n—1
x,= Y Dgi, for 0<s<n-—1. (41a)
t=0

So by chain rule,

ou, "Mox. ou, "'  du
m_ s m__ “%m 41b
o Ly o P (310)

and by Equation (39),

o, " du
= . 4
a2, m;, b 5, (#10)
By Equation (41b), 1 1
Ov; "C "= ou
R d. D, .- 41d
6}% mgo ” sgo * axs ( )

Rearranging terms gives us
Sia Y D, Y dpr (41e)
By the CR conditions, )
ot 41f
Z CS)I 6X ( )

This is equivalent to

67- n~—1 n—1 /n~1 (3
Yoy, ¥ ( y c;",,djm)%. (41g)
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Applying Equation (35) gives us

- n~—1 auh

Z Z js jh g{) . (4 lh)

If we rearrange terms, we have

o, (" "l du, .
s il 41
a;\-l ( Z dJstl)(hZO d}h 8x0 ( 1)

s=0

Since (d;,) and (D) are inverse matrices,

1 if t=j
d = 42
Also, by Equation (39),
dv; "I ou,
= l=—. 42
0xg AZ%(jhaxo (322)
Therefore,
dv;
av, Ei it t=j
=5 =10%g
e ]o it 1), (43)

Now Equation (43) says that dv;/d4; = 0v;/Cx,. In deriving this equation, 4; depended
on x,. Thus for each j, v; is an entire function of 4; only out of all the 2,’s. Q.E.D.

Thus Equations (37) give all entire functions ug, u, ..., u,_, : C* — C that satisfy
the CR conditions (Equations 27). Are the differentiable functions on B, the same no
matter which basis is used?

Theorem 4. No matter which basis of B, we use, the CR conditions of that basislead to
the same set of differentiable functions of B,.

Proof. By Equation (34),

n—1 n—-1
Z Xpdy = 9. X ,,( Y a’j,,EJ)

h=0 j=0

5 (S a)e

ji=0

(44)

Similarly,

n—1 n~1 /n—1
Y Uy = 2 (Z djh“h)Ej
h=0 h=0

Thus by (37),

Z Updy = Z f;( Zl dﬂxl> 45)

Finally, by Equation (40) with a change of indices,

n—1

Z Updy = Z Jit4; (46)

where 4y, Ay, ..., 4, are the eigenvalues of 3”6 x,K" Thus, no matter which basis
dg.dy,....4,_; €B, we use, we obtain as differentiable functions those of the form
Y126 fi(2)E; where fo, f1,. .., f,-, are entire functions: C — C. Q.ED.
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Also, the transpose of the Jacobian of uq, u;, . .., u,_; is the matrix representation

n—1 au n—1 /n—1 8‘“
L -3 (T
X0

n=00Xo j=0 \h=0

n—1 n—1
B I;O fjl(lg:O dﬂxl)Ej (47)

of

n—1
= 2. fIRE,
j=0

by Equations (44), (38a), and (40). Thus we can call all sides of (47) the derivative of (45)
and (46). It is obtained by differentiating the f;’s.
Note that this differentiation is linear and obeys the product rule and chain rule.
To prove the latter statement, let
n—1 n-—1
u= Y f{4,)E; and v= Y g;(4)E;
i=o =0
where 4; is given by Equation (40), and fo, f,.. .. fu=1> G0>91>- - - »gu— aT€ entire
functions: C —» C. Let

n—1

c= Z cE;

j=0
where cg, ¢y, ...,c,_, are constants in C. Then

-1 n—1

W= fi(4)E;, v'=Y gj(};)E;, and ' =0.
j=0

J Jj=0
Also,
n—1
u+uv= Yy (f;+9))E;;
j=0
n—1
cu= Z [ijj)(/lj)E,-;
j=0
n—1
uv = Z (fjgj)(’lj)Ej;
j=0
and

n—1
uv=Y (f; g} A)E;.
Jj=0
From these, we can show that

u+vy=u+v, (cuy=cu, (Ww)=uw +uv,
and
(u-v) = op'.

4.4, SPECIAL CASES

Taking the matrix representation (21)of Y 7= x Kk, (in Section 3),if the transpose of the
Jacobian matrix of functions ug, 4,,...,u,_,:C" = C is of the form of this matrix
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representation, then the CR conditions take the form
u ou
Sxs s 5 for O<h<n—1, 0<s<n-—1, (48)
0x, Oxg

where h + s is taken modulo n. If

n—1 n—1
u( Y x,,k,,,)= Y ukys 49)

h=0 h=0
then ‘
ur: llm u[x0k01+."+(xs+AxS)kSl+..l+xn—lk71—l,l]_u. (50)
Ax;—0 Axsksl

This is well-defined because the multiplicative inverse of ki, is C‘szk,,gs,,. Thus (50)
becomes

n—1 a
u
S h
="k, gy . ks,
h=0 6Xg
n-1
— V—l(h—s)sakuh.k
= 5 a h—s,l
h=0 Xy

where h — s is taken modulo n. Replacing h by h + s (modulo n), we obtain

h=0 OX
By (48), all these derivatives of u in the directions of the n axes are equal. Thus

n~—1 auh n—1 611

- —h Kk, = v —Lhs h+s ) 3

. 2 0x, k h;) - Ox; K (1)
As a special case of Theorem 3, ugy,u,,...,u,_, are entire functions: C" - C

satisfying Equations (48)ifand onlyif f, f;,..., f,_, areentire functions: C — C such

that

) o lnfl ) n—1
uj:B JS“/Z)UU 1)_;1 Z < h_)f'h Z Bmgmh (1/2)m(m l)xm (52)

h=0 m=0
for 0 <j<n— 1. Also,

n—1 n—1 n—1
— emh—(1/2)1 -1
Z uk; = z fh( Z Brmh = imen )xm)Eh
h=0

j=0 m=0

n—1

= Y [uAE, (53)
h=0

where 4, is given by Equations (16).
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