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ABSTRACT

Yano & Ako (1973) obtained certain conditions under which the complete lift of tensor fields
in M admits an almost quaternion structure of first and second kind in tangent bundle. Yano
(1967) defined tensor fields and a connection on cross-section in the cotangent bundle. Here
we obtain conditions under which the complete lift of tensor fields in M admitting almost
quaternion structure defines a similar structure on cross-section in the cotangent bundle.
Further, by introducing a symmetric affine connection in M we obtain equivalent conditions
for the set {FC, G, H®} to be almost quaternion.

NOTATION

Yano (1967) describes indices a, b, ¢, ..., h, i, j, I, q, ... which have rangesin [, ..., n,
and indices A, B, C, ..., A, i, v, ... which haverangein /,...,n,n + 1, ..., 2n. We put
i =i+ n. Summation over repeated indices is always implied. Entries of matrices
are written as A/, A; or A% and in all cases, j is the row index while i is the column
index. We follow the same notation and definition.

INTRODUCTION

Let (M", g) be a C*, n-dimensional differentiable manifold and C{M"), its cotangent
bundle. Let 7 : C{M") - M" be the natural projection of C{M") onto M". If {U, x"}
is a coordinate system of M”", then {U, x*} induces in a natural way a coordinate
system {n~Y(U), (x", py)} in C{{M"), where p, is the component of I-form at the point
x*. This new coordinate system is called an induced coordinate system in C{(M").
Yano & Ako (1973) defined a manifold which possesses an almost quaternion struc-
ture of first kind if there exist a set of three distinct tensor fields F, G, H of type
(1, 1) such that

F?= —1, G*= —1, H*= —1

(1)
F =GH = —HG, G =HF = —FH, H=FG= —GF
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Similarly a manifold is called an almost quaternion manifold of second kind if for
the tensor fields F, G, H of type (1, 1), the following are satisfied:

F2=_15 G2=1, H2=1
F=GH=-HG, G=HF=-FH, H=FG=—GF.

2

Let w be a global 1-form defined in M” whose local expression is w = wy(x) dx’. Then
w defines a cross-section in the cotangent bundle C{M") whose parametric repre-
sentation is

xXP=x" = wix). (&)

Thus the tangent vectors Bff = 9; x to the cross-section have components

"
o= ) @

On the other hand, the fibre being represented by
x" = constant, Py = Pn (5)
and the tangent vectors C# = drx“ to the fibre have components
. 0
Cit=CH1= |:5,.,:|. ©

The vectors Bff and C# being linearly independent, form a frame along the cross-
section. We call this the frame (B, C) along the cross-section (Yano 1967). The
coframe (B%, C%) corresponding to this frame is given by

By = (57,0
Cli=Cha=(=08;wy, 3}). ™)

We call this the coframe (B, C) along the cross-section. The basic 1-form p = p; dx'
has the expression p=w;dx’ and the basic 2-form the expression dp =
1/2(3; w; — 8;w;) dx’ dx' on the cross-section. The complete lift X of a vector field X

in M to C{(M), has components
Xh
[ P ] ®)
—ZLx Wy

with respect to the frame (B, C) along the cross-section. Thus we have
XC:BAX' — CY(PLyxw) 9)

Yano (1967) proved that the complete lift X¢ of a vector field X in M to C{M) is
tangent to the cross-section determined by an 1-form w in M if and only if the Lie
derivative of w with respect to X vanishes in M. In this way Yano (1967, p. 38)
characterized N as

NYXE, Y9 = (N(X, V) = (LxN)y — (£yN) + Ny, vp)” (10)

where V denotes the vertical lifi.
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ALMOST QUATERNION STRUCTURE ON CROSS SECTION IN THE
COTANGENT BUNDLE

Yano (1967) shows that the complete lift F¢ = F in M" to C{M") has components

- F* 0
FAz[ ; ] '
8=\ pu0Fe — 0, F9) F ()

If we consider the components Fi on a cross-section in the cotangent bundle with
respect to frame (B, C), we have

Fa_ F! 0
P (@i Fs — 0y F)w, — Fid,w, + Fy0;w, F!

or, in short, components of F are rewritten as

- Ff 0
Fa=|70 7
Py F

def

Py, = (0; Fy, — 0, F)w, — Fi0,w, + F, 0w,

where

Now, we will investigate the condition for F to be an almost quaternion on C{(M}).
We denote

w,(0Fh/0x' — 0F{/ox") by w,, Fp

h i
Fop=pgra=|f 0050
pn FullPu Fi

[ FF 0
~ | PwFi+ P;F}, FiF}

Since F? = —1,

(F6)? = [ —9] . 0
Pth;‘i‘PﬂF;, _‘5{|.

Thus (F€)? = —1if P, Fj- + PjiFi, =0, ie.

{0 Fapw, — Fi0,w, + F,0;w}F; + {0 Fipw, — Fi0,w; + Fio;w}F, =0. (13)
Similarly, (G¢)? = —1 and (H°)?> = —1, i.e.

{(6|,- Guyw, — Gio,w, + G, 0; w,}G§ + {6|jG‘,-’|)wa — Gj0,w; + G} 9 w)GL=0 (14)
and

{0 Hi)w, — H0,w, + H} 0;w)H'; + {(0,; H)w, — H,0,w; + H:0;w,}H}, =0 (15)

Again

~ G 0 ~ ¢
GC=G§=[ ' ] and H=HZ= H; 0
R; Hj
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where
def
Qin = (0: Gy — 0, G)w, — Gi 0, w,, + G}, 0; w,
and
def
Thus R; =(0;H{ — 0;H})w, — H',0,w; + Hi0;w,

GeHE =[ L 0.]_
QwH; + R;G, Fj
We know that G° H® = F€; on simplifying, the equation becomes
w.{H;0,;G}; + G,0,; HY} + GLH; 0w, + H!G},0;w,
= w,{G¢ 8, Hi\ + Hi0,Gf — H! 3, G} + G HLO,w, + H,Ghd,w;  (16)
Similarly we obtain conditions for F€ G = H and HC F© = G€ respectively, i.e.
w,{G; 0, F + Fi,0;G} + Fy, G 0, w, + G Fi0;w,
= w{F{0|;G} + G, 0;Ff — G50, F{} + FiG,d;w, + G;Fio,w;  (17)
and
w{F.0,Hy + H, 0 F(;} + H, Fio,w, + FHi0;w,
= w,{H?0,,Fi, + Fi3,H* — Fi 0, H?} + H'F,d;w, + F\H\d,w,. (18)

Further, since

HG = [ - 0.]
RuGj+ Q;Hy —F
0 0
GOHT + HOGE = l:Qith' + R;; G, + Ry, G} + Q: H, 0]
From above we obtain G° H® + HS G* = 0 if
{(0: Grw, — GiO,wy, + GO, wH) + {(0,; HY)w, — H;0,w; + H:0;w,} G,
+ {(¢8,; Hy)w, — Hi 0, w, + H}, 0, w,} G’ + {(8,; Gipw, — G0, w; + G:0;w,} H), = 0
or,
w,{0, Giy Hj + 0. H;, G} + 8); G H}, + 8 H G}
+ (G, H; + H;, G;)@,- w, — (G H}, + HGi)o, w, = 0.

As we know GSHC + HCG® = 0, so the above equation becomes

w0, G Hj + 0 H, G + 0, Gfy Hj + 0, H G} = 0 (19)

Similarly, we obtain HCF€ + FCHC = 0 and F¢G® + G°F¢ =0 as
w,{0: iy G + 0),GiFj + 0, F§y F; + 8, F{| F,, # 0 (20)
w0y Hj\ Fj + 0, Fiy Hj + 8, Hiy F), + 8, F§ Hy} = 0 (21)

Thus we obtain
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Theorem I: If a manifold M" has an almost quaternion structure (F, G, H) of first
kind (respectively, second kind), then (F¢, G, H®) also has an almost quaternion
structure of first kind (respectively, second kind) on the cross-sections in the
cotangent bundle if an only if Eqns (12) to (21) are true. Yano (1965) defined a
connection coefficient

oF¢
Z,i=a_x:‘+r‘iiFI{ — Iy Fg

where I'¥; are the components of an affine connection V in M". Assuming I' is
symmetric

def

| 1 Fllhil = %(r‘thil - F‘iiF:)-
Eqns (13) to (21) can be equivalently expressed in terms of connection coefficients.
[{(Fa.:— Fi ) + 20 Fiytw, + (Fi, 0w, — Fi0, w))]F}
+ [{(F¢ ) + F5.) + 200 Ffiw, + (Fio;w, — F;0,w)1F, =0, (22)
[{(Gs.: — GI.1) + 2T Gy 3w, + (GLO; w, — Gi 8, wp)]G]
+ [{(Gf ; — G%.)) + 25 Gfyj}w, + (Gi 0w, — G50, w)IGL =0  (23)
and
[{(H} ; — Hi y) + 2T Hiy }w, + (H, 0;w, — H{ 0, w,)]H]
+ [{(H? ; — HS ) + 2T3Hf }w, + (Hi0;w, — H 0, w)]H}, =0 (24)
OnF§w, + 2w, g Ffy;y — F,0,w; + F50,w,
= w,{H;0,; G} + G, 0,;H}} + 2wal'{ Gl H} + 2w, T'{ Hy;,
x Gy — GiH%0,w, — HG,0,w; + G, H}0,w, + HG},0;w,, (25)
o HY w, + 2wal'{ H}y; — H, 0,w; + H50,w,
= w,{G}0;Fa + F},0,;G%} + 2w, I'{ Fl, Gj + 2w, T G{y, Fi, — Fi G'o,w,
— G} F},0,w; + F;, G'jo;w, + G Fj,0;w,, (26)
2, G5 W, + 2w, T Gly;) — GLo,w; + G0, w,
= w,{Fj0Hy + H,0,F?} + 2w, T{ H{y, F} + 2w, I} F{}; H,,
— HiFio,w, — FiH,0,w; + H,F;0,w, + FiH,0;w,, (27)
wo(Gh i — G2 WHj + 2w, T4 Gy, Hj + w(Hi ; — H )G}
+ 2w, I{ Hly, G5 + w(G? ; — GS )H), + 2w, T Gl H,,
+ w(HE ; — HS )Gh + 2w, Hl;; G, =0 (28)
wo(Fi i — F2)G5 + 2w, T'{ Fliy, Gi + w,(G}, ; — G}, WF;
+ 2w, T Gl Fi + w(F2 j — F3 )G, + 2w, T{ i} G},
+ w(G? ; — G} )F, + 2w, T Gl Fi =0,  (29)
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wa(Hy : — HE )F; + 2w, T H 'y Fi + w(F5 . — Fi )H;
+ 2w, I Fll,-,,|Hj- + wa(H:{j — H} i)F:, + 2w, I Hllj,-IFf,
+wa(F‘,-'vj—F‘}’i)H;',+2waI“‘}F1 H§,=0. (30

|Jtl

Thus, we have

Theorem 2. In an almost quaternion manifold M of the first kind (respectively
second kind) with almost quaternion structure (F, G, H), the cross-section in
cotangent bundle C{(M") also possesses an almost quaternion structure (F¢, G¢, H)
of the first kind (respectively second kind) if and only if Eqns (22) to (30) are true
where V is a symmetric affine connection in M. Yano (1965) showed

wiFy — Fl ) =v,;— v ,=Curl v.

Wa(G?,j — G}'l) = 1_)1-‘1.— Dj,i = Curlv

w(HS , — H, )=10;,—7,;=Curl »

In case, Fj ; = G ; = H; , = 0. Hence, in view of the above relation, the Eqns (22)
to (30) become

w, 'Y Fly Fs+ w, T4 Fli; Fh = 0, (31)
w,I'{ Gl G + w, T Gl Gy, = 0, (32)
w, TS Hlyy Hy + w, T3 Hj Hy = 0, (33)

2w, I Flyy) — Fho,w; + Fio,w,
= 2w, % G,y H' + 2w, T2 HL, G — GLH O, w,
~ H'GLo,w; + Gy Hidw, + HIGLo,w,,  (34)
2w, I8 Hy;) — Hy,0,w; + H0,w,
= 2w, I'{ Fl G5 + 2w, Gl Fi — Fi G40, w,
— GYFid,w + FyGio,w, + G Fid,w,  (35)
2w, T4 Glyjy — GLO,w; + G0, w,
= 2w, H{y F5+ 2w, T Fl;; H, — Hi F50,w, — FSH, 0,w,
+ H, Fid;w, + FiH,d;w,, (36)
W T2 Gl Hi + w, T2 Hiy G+ w, T8 GLy HY + w, T HY, Gy =0 (37)
W% Fly GEt woT% Gl o4+ w, T Fly Gl + w, U Gl Fi =0, (38)
W, T8 Hiy Fi 4 w, T8 Fly Hi 4 w, T4 H Fi b w, T2 FL HL =0 (39)

Thus we have the following corollaries:

Corollary A. In an almost quaternion manifold (F, G, H) of first kind (respectively
second kind), if the covariant derivatives of F, G, H vanish, then (F¢, G, H®) defines
a quaternion structure of first kind (respectively second kind) on cross-section in the
cotangent bundle if and only if Eqns (31) to (39) hold.
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Corollary B. If in a manifold having quaternion structure (F, G, H) of first kind
(respectively second kind), Curl v = Curl 5 = Curl 5 = 0, then (F¢, G°, H®) defines
an almost quaternion structure of first kind (respectively second kind) in cross-
section in the cotangent bundle if and only if Eqns (31) to (39) hold. Yano & Davis
(1975) proved that in an almost quaternion manifold M if any two of six Nijenhuis
tensors

[F, F], [P, G], [G, H], [H, F], [G, G], [H, H]

vanish, then the others must vanish. We have

Theorem 3. Suppose that a manifold M has an almost quaternion structure
(F, G, H) of first kind, (respectively second kind), then the cross-section determined
by an 1-form w in C;(M") also defines an almost quaternion structure (F¢, G%, HY)
of the same kind if Nijenhuis tensors

[FC, FC], [GC, GC], [HC, HC]’ [FC, GC], [GC, HC], [HC, FC]

vanish. The proof follows by straight forward calculations by virtue of Eqn (10).
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