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torsionally loaded pile
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ABSTRACT

In this study a closed form solution is derived for the determination of deformation in soil
surrounding a laterally and torsionally loaded pile. The solution is based on the assumption that
the pile is relatively rigid while the soil is assumed to be homogeneous, isotropic and elastic.
Results of the study are presented in dimensionless graphs to facilitate quick and easy
determination of deformation in the affected soil.

INTRODUCTION

In a previous study (Al-Hussaini 1982a) a closed form solution was presented for the
determination of normal and shear stresses within soil around laterally loaded pile. It
was followed by another study {(Al-Hussaini 1982b) where a closed form solution was
developed for the determination of normal and shear stresses in the soil surrounding a
torsionally loaded rigid pile. This paper is an extension of both previous studies, where
a closed form solution for the determination of deformation distribution in the soil
surrounding a laterally and torsionally loaded pile, is to be presented.

THEORETICAL CONSIDERATION

Consider a hypothetical pile subjected to a lateral and torsional load of P, and T,
respectively, at the top of the pile as shown in Fig. 1. These two forces will generate a
lateral soil resistance and torsional resistance of variable magnitudes along the pile.
Assume that the lateral thrust at depth L from the ground surface is equal to P and the
torsional resistance is equal to T (Fig. 1). The lateral thrust P and the torsional
resistance T may generate contact pressures and shear stresses, respectively, between
the pile and the affected soil as shown in Fig. 2. In order to determine the deformations
around this pile, the equilibrium, boundary, and compatibility conditions must be
satisfied.

For plane strain condition, equations of equilibrium in Cartesian coordinate
system are
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Fig. 1. Schematic diagram of pile subjected to Jateral and torsional load.
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where o, and o, are the normal stresses acting on the x and y planes, respectively, and
7,y 1s the shear stress acting in the xy plane.
The compatibility equation for plane strain condition can be expressed as

Vi{(6:+0,)=0 ()

where V is the Lablacian operator.

It has been shown (Airy 1863) that Equations 1 and 2 will be satisfied if one
introduces a stress function U(x,y) such that the sought stress components are second
partial derivatives of the stress function such as

(1b)

02U (x,»)
a.)c=‘7y2l (33)
o =M (3b)
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Fig. 2. Stress at a point in the vicinity of laterally and torsionally loaded pile.

U (x,y)

=T 0% dy (30)

When Equation 3 is substituted into the compatibility Equation 2 the latter transforms
into
Vo +0y)=VH{U(x,y)] =0 C))

The solution of the fourth order homogeneous partial differential Equation 4 can be
simplified using a complex variable procedure (Timoshenko & Goodier (1962) to
obtain

U(x,y)=3Z ¢(z)+28@) + 1 ()] 5)

where z=x41y; ¢(z) and yx(z) are analytical functions whose complex conjugates are
¢(z) and y(z), respectively. These functions can be determined from the boundary
condition of the particular problem. It has been shown (Timoshenko & Goodier 1962)
that the normal and shear stresses can be expressed as

0t ity = (D) +FC—z F O -1 @ (62)
0y ity =¢'()+ FD+2 § @ +7 @ (6b)

By adding and subtracting Equations 6a to 6b, then replacing i by —i, and substituting
¢’(z) and y”(z) for ®(z) and ‘¥(z), respectively, the following expression can be
obtained:

0.+ 0, =2{D(2) + D)] = 4Re[d(2)] (7a)
6,—0,—2 ity =2z 0 (z)+ P(2)] (7b)
Oy — 05+ 2 ity =2[2D'(2)+ V()] (7¢)
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COMPLEX REPRESENTATION OF DISPLACEMENTS

Starting with Hooke’s Law, the stress-strain relationships can be expressed as

sx=% [ox—v(oy+0.)] (8a)
gy =% [oy—v(o,+04)] (8b)
e,=0 (8¢)

where €., ¢, and ¢; are the Cartesian strains in the direction of g, 0, and ¢, respectively,
v and £ are the Poisson’s ratio and the modulus of elasticity of the material
respectively. Under plane strain conditions . is dependent on o, and ¢, according to
the expression o, =v(0,+ g,). By substituting this value for ¢, in Equations 8a and 8b
the following expressions can be obtained:

me_,:(l—v) Ox—V 0,=2Gey (9a)

may=(1—v) o, —v 0x=2G¢, (9b)

where G is the shear modulus of the material. By substituting Equation 9 in Equation 7,
and after some algebraic manipulation the following expression is generated:

2Ge, =(1-2v) [@(2) + D@D — 2 V'(2)—z D (2) — P (2) — ¥(2) (10a)
2Ge,=(1—2v) [D(2)+ B@D)) +2z V() +z D)+ P)+¥(z)  (10b)

Integrating Equation 10a with respect to x and Equation 10b with respect to iy, and
adding the results the following expression is obtained:

2G (u+1iv)=3—4v) ¢(2)—z D) — Y@ +f(x)+ig(y) (1

where u and v are the displacements in the x and y directions respectively, W(z) = y'(z),
Jf(x) is a function of x only, and g(y) is a function of y only.

Taking the derivative of Equation 11 and comparing it with Equation (10) the
following conclusion can be reached:

S x)+g (=0 (12)

It follows that /" (x)= —g’ ()= C where C is a constant. Thus the functions f(x) and
g(y) represent rigid body displacement in the z-plane and they do not influence the
stresses or strains. The constant C attains definite value if one assumes an initial rigid
body displacement of the region under consideration. If f(x) and g(y) are discarded,
then Equation 11 takes the following form:

2G (u+1v)=(3-4v) $(2)—z ®(2) —Y(2) (13)

REPRESENTATION IN CURVILINEAR COORDINATES

Since the plane of contact between the pile and the surrounding soil contains a curved
boundary (Fig. 2), the solution will be simplified by mapping the curve geometry of the
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pile onto a simpler geometry such as a semi infinite space. A function which facilitates
such a transformation can be represented by the following:

z=x+iy=f()=f(r+is) (14)

where r and s are curvilinear coordinates in the t-plane, such that r=r+is.

It is more appropriate to transform the functions ¢(z), ®(z) and Y(z) from the
z-plane to the corresponding functions in the z-plane. This can be accomplished as
follows:

d(2)=oLf (D)= (1) (15a)
AU
¢'(z)= 70 =¢() (15b)
Y(@)=Y/()]=Y() (15¢c)
Y(t)
=——C= 15d
¥'(z) IZ0 ¥(2) (15d)

It has also been shown (Timoshenko & Goodier 1962) that stresses and
deformations in the z-plane and the corresponding one in the ¢-plane can be expressed
as

o,+0,=0x+0, (16a)
0s—0,+2 1=(0,— 0+ 2i rxy)% (16b)
C+in)=u+ zv)% (16¢)

where ¢ and 5 are components of deformations in the r and s directions of the ¢-plane.
Replacing the functions in the z-plane by the corresponding one in the t-plane,
Equation 13 may be reduced to the following expression:

2G (u+1iv)=(3-4v) ¢(1)—B()— Y (?) (17)

From Equation 17, the value of # and v can be obtained as

1 —
=55 Re [G—4v) ¢() — () — ¥ (?)] (18a)

| —
=3¢ I [(3-4v) () — (D)~ Y ()] (18b)

In a similar manner the strains as expressed in Equation 9 can be written as

=12 Re [(D(:)]—— [f(z)?((t))ﬁ-‘{’(t)] (19a)
1~ LU

y_— Re[®(D)]+=—

¢ ()] +5 [f(:) 0 +‘P(z):l (19b)
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BOUNDARY CONDITION

Let 6, and 7 be the normal and shear stresses, respectively, applied to the boundary of
the problem (Fig. 3) in the z-plane, thus

(o_"+ir)=(o_y+irxy)=<0'x‘;0'y+0'y_0'x2+21‘fx}’) (20)
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Fig. 3. Transformation of half space with semicircle onto half space.

By utilizing Equations 7, 15 and 16 and after proper substituting in Equation 20 the
following is obtained:

On+it=0() + DD +1(0) %t)—)+% L 20) @n

Since the boundary of a semi-infinite mass in the z-plane (Fig. 3) corresponds only to
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the real axis of the t-plane (i.e. t =r for s =0), the boundary condition along the ¢-plane
as expressed by Equation 21, can be expressed as

LA AC)

a,.+lr-(D(r)+(D(r)+f(r)f( I )‘P(r) (22a)
o(r) f @]

_ 22b

it=®(r)+ D)+ 1 )f() 0 (22b)

SOLUTION OF THE PROBLEM

The solution of stresses around a laterally loaded pile (Fig. 1) has been previously
developed (Al-Hussaini 1982a). This solution is based on the determination of a
function that maps the z-plane, represented by the soil influenced by the lateral thrust
of the pile (Fig. 3) onto a semi-infinite region represented by the ¢-plane. The function
which accomplishes this transformation is expressed as

1 t—R
z=R tanh [2 i ~in (t-}—R)] (23)

where R is the radius of the pile.

Since the transformation function between the z-plane and the ¢-plane is found
(Equation 23) the functions ®(¢) and W(¢) need to be determined prior to arriving at a
solution for the distribution of deformations. These functions can be determined by
applying the Cauchy integral formula (Churchill 1974) to the boundary conditions as
expressed in Equation 22. After performing the integration, the values of ®, ®’, and
Y(r) can be expressed as

®(1) = ”"2 ;iif In (:%) (24a)
n j R
'(1) =%ﬁ (12——7@) (24b)
B f) ¥
Y(H)= —7;1 (t-}—R) f(t) (24¢)

Equation 19 in conjunction with Equation 24 are sufficient for determining strains
within any point surrounding the pile. However the deformations « and v cannot be
determined unless the value of ¢(¢) and y(¢) are known.

DETERMINATION OF ¢(r) AND y(1)

The value of the function ¢(r) can be obtained directly from Equation 24a.

On—IT t—R
o) = |B(r) dt= J T In (m>dt+C

¢>(t)-— [(t—R) In(t—R)—(¢+R)In ¢+ R)+2R)+C (25)
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In a similar manner we can integrate Equation 24c using the following procedure:

z_—g) f() @)

W)= |®() dt =[% ln(

i 1 t—R
R ni 1, [1—R
f(t)'—‘ _2(12 _ F“Rz) SeCh2 [—‘—Z In (7—+—R—)j|

an—IT R
()= —s
@ i (tz—Rz)

After performing the integration and rearranging the terms the value of (r) can be
written as

where

w(t>=9{ii\/t2—R2+§[(t~R)ln(z—R)—(z+R)1n(t+R)—2R1+c. @7)

Fig. 4. Isobars of u induced by radial stress o.
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By knowing the functions ®(f), ¢(¢), and (1) the solution of Equation 18 is essentially
completed. To obtain a finite displacement the integration was carried within a region
(o <[t/ < 10R); beyond this region displacements are considered negligible.

The conversion of Equation 18 to an explicit equation would result in a very long
expression, thus the numerical evaluation of the deformations was carried by a digital
computer. In order to simplify the solution, results are presented in a dimensionless
form that allows easy determination of the deformation in the affected soil around a
laterally and torsionally loaded pile. The solution is presented in the form of isobars of
deformations where the ordinate and abscissa are normalized in terms of the pile
diameter, D. Isobars for the induced deformations are given in terms of the average
contact pressure g, (where g, = P/D) or the average contact shear at the level of interest
7 (where 1=2T/nD?). The horizontal deformation u and the vertical deformation v
were calculated on the basis that Poisson’s ratio, v, of the soils is equal to 0-48. Isobars
for v and u, due to normal stress alone, are presented (Figs. 4 and 5) as aRa,/G and
fRa,/G respectively, where o and f§ are deformation factors and G is the shear modulus
of the soil. Isobars for v and u, due to shear stress alone, are presented (Figs. 6 and 7) as
yRt/G and éRt/G, where y and ¢ are deformation factors, and t is the average shear
stress along the contact surface between the pile and the affected soil.

o =001

Fig. 5. Isobars of v induced by radial stress o,.
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Fig. 6. Isobars of u induced by torsional shear stress 1.

ILLUSTRATED EXAMPLE

A 30in (0-76 m) diameter and 44 ft (13-42 m) long drilled shaft is embedded to a depth
of 42 ft (12-81 m) in clay (Fig. 1). Force of 30 ton (267 KN) applied to the top of the
shaft induced a maximum lateral thrust of 0-5 ton/in (175 KN/m) at a depth of 3-13 ft
(0-95 m) below the ground surface. Compute the soil deformation along the radial
direction of the induced thrust. Assume the average shear modulus and Poisson’s ratio
of the soil to be 4000 psi (13,780 KN/m?) and 0-48 respectively.

SOLUTION

Let the diameter of the shaft be designated by D, its radius by R, and the induced lateral
thrust at a distance L below the ground surface designated by P as shown in Fig. 1. The
average contact pressure on the contact surface of the shaft can be determined as

P 0-5x 2000

Oave=0pn="7"

= . i 2
5 0 33-34 psi (230 KN/m?)

Since o, 1s determined, the deformation u along the radial direction of P can be
calculated from Fig. 4. This can be done by selecting radial distances Y/D and reading
the corresponding valtue of « of the selected points. The value of u is simply calculated
as u=fRo,/G as shown in Table I.
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Fig. 7. Isobars of v induced by torsional shear stress 7.

Table 1. Calculation of deformations around circular pile

Radial Dimensionless Contour Deformation Deformation

distance ratio reading u=BRon/G u
¥(in) Y/D o (in) (mm)
15-0 0-50 0-64 0-080 2:03
22:5 0-75 0-57 0-071 1-78
300 1-00 0-46 0-058 1-47
37-5 1-25 0-36 0-045 1-14
450 1-50 0-26 0-033 0-84
60-0 2-:00 0-11 0-014 0-35

The variation of the deformation v along the radial direction of P is presented in
Fig. 8.

In this study the soil is assumed to be linearly elastic, therefore the principle of
superposition is valid. Consequently the deformations due to lateral load can be added
to the deformations due torsional moment when the pile is subjected to both lateral
force and torsional moment.
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Fig. 8. Variation of radial deformation v in the direction of the induced lateral thrust (1 in=25-4 mm).

CONCLUSION

In this study a closed form solution is presented for determining deformations around
laterally and torsionally loaded pile. The solution is based on the assumption that the
pile is relatively rigid, and the contact pressure and shear stresses are uniformly
distributed. It is further assumed that the soil medium is linearly elastic and isotropic
which is approximately correct for soils under low stress level. The results presented are
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meant to enhance our understanding of the deformation distribution around laterally
and torsionally loaded pile, and may provide an idea of the order of magnitude of the
expected deformations. Results of the study are presented in dimensionless graphs to
enable the determination of deformation with minimum calculations.
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