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ABSTRACT

Baseline, the shortest distance between two satellite trajectories, is an important
parameter in Synthetic Aperture Radar Interferometry as it has direct impact on
the accuracy of Digital Elevation Models and surface displacement
measurements due to land subsidence, earthquake etc. Exact and simplified
models for the estimation of baseline parameters for a flat earth as well as a
curved earth were developed. The results are compared with the existing
simplified models and found to be in good agreement. The baseline parameters
are estimated using a Newton-Raphson method followed by a least square
technique by simulating 90 ground control points which were well distributed all
over the satellite scene (heights - phases). The interferogram phases were
corrupted with various types and levels of phase noise. An iterative technique
for the improvement of baseline estimation by minimizing the phase noise is
illustrated with examples. A transformation function is developed to reduce the
phase noise of the rest of the image for generating a DEM.

Keywords: baseline parameters, digital elevation models, microwave remote
sensing, phase noise, SAR interferometry, simulations, statistical techniques,
surface deformation.

INTRODUCTION

SAR interferometry (InSAR) is a remote sensing technique which finds
applications in various fields such as Digital Elevation Models (DEMs)
generation, land subsidence mapping, surface displacement due to earthquakes,
monitoring of volcanoes, estimation of glacier movement and run-off,
monitoring of land slides etc. The concept of this technique is to interfere the
phases of two complex SAR images of the same scene (by registering them with
an accuracy of a fraction of a pixel), but acquired from different orbits by the
same satellite (or different satellites with the same configuration). The
interferograms thus obtained will be unwrapped and then transformed in terms
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of surface displacement or elevations of the ground or the flow of glaciers as per
the context. Further details on the InSAR technique can be seen in the
references (Zebker and Goldstein 1986, Bamler 1998, Indian InSAR group 1999,
Massonnet et al. 1993, Hanssen 2001).

The InSAR technique is a cost effective approach (Toutin and Gray, 2000)
for generating DEM of high spatial (= 20 m) and vertical (=5 m) accuracy.
Recently, efforts have been underway to further improve the vertical accuracy of
the DEM generated through an InSAR technique (Small & Niiesch 1996,
Seymour & Cumming 1996, Kumar 2001,). The Shuttle Radar Topography
Mission (SRTM) is a special effort in this direction (Stefan et al., 2000). The
vertical accuracy of an InSAR derived DEM mainly depends on the accuracy of
the baseline estimation (Li & Goldstein 1990, Abdelfattah et al., 2000) and the
degree of phase noise. Baseline is defined as the shortest distance between two
satellite tracks (at the InSAR position) from which the two images are taken. It
has vertical and horizontal components. The baseline parameters often referred
in this paper are as follows (refer to Figure 1):

B -- Baseline, the minimum distance between the two satellite trajectories,
B, -- Vertical component of baseline with reference to horizontal plane,
B;-- Horizontal component of baseline with reference to horizontal plane,
B, - Perpendicular component of the baseline with reference to slant range,
B,,— Parallel component of the baseline with reference to slant range,

dBy, dB,, dB_ are the variation in baseline along azimuth (per 100 km.),

C - Phase constant with respect to the datum level, and

h, - Elevation corresponding to 27 phase in an interferogram after flat earth
fringes are removed (ambiguity height).

There are several methods for the estimation of baseline parameters. To
mention a few:

e Precision orbit approach (Small et al. 1993),
e Ground Control Points (GCP) approach (Seymour & Cumming 1996),

e Flattened terrain interferometric fringes approach (Prati & Rocca 1990,
Singh et al. 1997), and

e Corner Reflectors approach (Prati et al., 1993).

Each method has its own advantages/disadvantages under given conditions.
For example, the Corner Reflectors approach needs preplanning and
installation of the reflectors synchronously with the satellite passes. The
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flattened terrain interferometric fringe approach is very useful in gently
undulating terrain with the least vegetation cover, particularly desert-like
landscapes. A GCP approach needs precise measurement of elevations and
identification of their locations in the intensity images to a sub-pixel accuracy.
One should choose the regions of high coherence for the control points so that
the effect of phase noise can be minimized. Also, it is preferable that the GCP
location can be such that the same features should extend for at least 3 x 3 pixels
with reasonably flat terrain. This can be easily achieved and will ensure the
correctness of GCP. The precision orbit approach is the simplest but needs very
precise knowledge on the satellite trajectories which generally are not accessible
to every user.

It can be seen from the literature (Knedlik ez al., 1999, Wu et al., 2002) that
most of the authors used a GCP approach for the estimation of baseline
parameters due to its high accuracy. The commercial SAR Interferometry
software packages (for example GAMMA interferometry software) also uses a
GCP approach.

Knedlik ez al. (1999) made a detailed analysis on the accuracy of estimation of
baseline using Kalman filter and varying baseline from 50 to 1130 m. They reported
an error of -0.53 to 2.32 m in B, and -0.66 to 0.89 m in B,. Larger errors were
reported at a lower baseline. However, the baseline estimation error as a function of
phase noise was not carried out. Wu et al. (2002) studied the accuracy of estimation
of B, by simulating 100 levels of phase noise in the range 0 - 20%. They suggested a
transformation function to reduce the effect of phase noise.

In this paper, the authors have adopted the GCP approach for the estimation
of baseline parameters. The error in the estimation of baseline was investigated
as a function of degree of phase noise and baseline length. In the subsequent
sections, derivation of the exact model, reduction to a simplified model,
inversion method for the estimation of baseline parameters, the simulation of
various levels of phase noise, an iterative technique to reduce the effect of noise
on baseline estimation and a transformation function to correct the phase image
for generating DEM by reducing the noise etc. are discussed.

RELATION BETWEEN INTERFEROMETRIC PHASE,
HEIGHT AND BASELINE PARAMETERS

Derivation of exact model for phase - height - baseline relationship

The standard geometry of a SAR interferometric system in the plane orthogonal
to the azimuth direction is shown in Fig. 1 (Fig. 1a for flat earth and Fig. 1b for
curved earth). Sjand S, are two satellite positions separated by a baseline B
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having an angle o with the horizontal plane. Let the image taken by S; be the
master (reference image) and that of S, be the slave image (to be re-sampled to
register with S;). The origin of the coordinate system is at S;. Let us consider
two points P; and P, located in the image at a heights 0 and h meters with
respect to a reference surface. The difference in the ranges of P, and P, from S,
is partly due to the horizontal and partly due to the vertical component of the
range difference. Since we are interested in developing a model to establish the
relation between height and phase, we will consider the range difference (phase)
only due to the vertical range difference and not the horizontal range difference.
In this case, the ranges of P; and P, from S; will be the same, i.e,. § and 00 are
the incident angle and the change in the incident angle, respectively, as shown in
Figs. la and 1b. The coordinates of S,, P; and P, can be shown as (B, B,), (r
sind, - r cosf) and (r sin (6 + 99), - r cos (A + 00)) respectively.

Reference Plane P

Figure 1a. SAR Interferometry geometry for flat  Figure 1b. SAR Interferometry geometry for
earth model curved earth model

The path difference 6 is given by
6 = 2[(SiPy-S3Py)-(SiPy - SyPy)] = 2 [(r-S5P5)~(r-S5Py)] = - 2 [S2P2-S,Py]

Using the distance formula, we can calculate:

S,Py = \/(Bh — rsin 0)24—(BV +rcos 9)2 and

S,P, = \/(Bh — rsin(f + 80))*+(By + rcos(d + 9))*

The interferometric phase, ¢ = 2%6.
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Therefore,

o = —(4n V)] (B, rin(8-+ 06)P+(B, + reos(8+ ) — /(B — rsind)’+(B, +reost)’] (1)

Case 1. For flat earth with A as the altitude of the satellite ;

r = A/cos # and

cos (4 99) = (A—h)/r = (1-h /A) cosb.

Case 2. For curved earth with radius R (as shown in Fig. 1b):

r=(R+A)cosb— \/R2 — (R + A)*sin®*6@ and

P2 (R+-A) —(R+h)?
2r(R+A) ’
Equations for curved earth can be reduced to flat earth as R tends to infinity.
Since equation 1 is non-linear, the height for a given phase can be estimated
using Newton - Raphson technique followed by a least square method.

0+ 00) =

Simplification of exact model

The details of all the derivations presented can be seen from Bhagavath and
Vishal (2002). It can be easily seen from Figs. 1a and 1b, that

B, = Bcosa, B, = Bsinq,
B, = Bjcosf + Bysind and B = Bysinf — B,cosf
Considering only S,P;.

S,P = \/(Bh — rsin6)’+(By + rcosf)’ = \/[r — BLL]2+Bi,

1({ B 2
1+< i)
2 \r—B,

2
the higher terms) and S,P; ~r — B, + lz—L (by neglecting B,, compared to r).

SzPI ~ (r — B,‘,/)

(using Binomial expansion and truncating

B!’

o

whereB! and B! are the components of baseline resolved along and across S;P,
B! = Bsin(0 — a + 89 = Blsin(f — «) cos 90 + cos(0 — a) sin 9] = B,, + B, 90

(since 00 is small).

Similarly B} = Bcos(§ — o+ 80) = B, — B,,00

Similarly, we can calculate S,P, =1 — BLIL +

Now the phase difference can be represented as:
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_47r
L

Bl 2-pB?
B, _BL1[,+( Lzr J.):|

=B, (1+2)90| (neglecting 96 terms).
e (1))

h
A tan(&)‘

Case 1: Flat earth: 90 =

Hence we have,

A tan 6
h=——F—p<p (2)

4rB (1+2)

r

Since B, < < r, neglecting &, the above formula reduces to Franceschetti &
Lanari (1999). '

2,2 p2
Case 2: Curved earth: 00 = where K = [M} .
Ktan@ 2R
So we have,
AKtan @
h=———1Hs<¢ (3)
47B, (1 n i)

COMPARISON OF DIFFERENT MODELS

There are several simplified models for the conversion of phase to height ( Wu et
al 2002). The models derived by Franceschetti & Lanari (1999) and Massonnet
& Feigl (1998) and our model (Equation 2) are compared as a function of
baseline and range. For the sake of completeness, the models of Franceschetti &
Lanari and Massonnet & Feigl are reproduced here:

Franceschetti & Lanari model: /& = A;S;ne .
B
Massonnet & Feigl model: he = [AR; (tan (g;) cos (A)-sin (0))] / (2 6).

The meaning of different terms in the above expressions can be seen in the
respective papers. For the convenience of comparison, a new parameter h,
ambiguity height, is defined as the height for one fringe. All the four models are
programmed and the results are computed. Fig. 2a shows h, as a function of B
at middle range. It can be seen from Figure. 2a that as the B, increases, h,
decreases. At lower B, there is a large variation in h, in different models,
whereas the difference decreases as the B, increases. For example at B; =100 m,
the h, values are 90.6, 107.3 and 109.8 m respectively for Massonnet & Feigl,
Franceschetti & Lanari, our simplified model for flat earth, and exact model.
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Figure 2b shows h, as a function of incidence angle for 100 m B, . It can be seen
from Fig. 2b that as incidence angle increases, h, increases. The exact model
gives higher h, compared to the simplified models. The curved earth model gives
a higher h,compared to flat earth (Fig. 2d). The h, given by simplified curved
earth model and exact model differ by only 2.48 m and this decreases with
increasing B, . For B, above 200 m, practically there is no difference among the
models.

120 q
100 5 + Simplified model for flat
x earth
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Figure 2a. Comparison of different models as a function of Bperpendicular
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Figure 2b. Comparison of different models as a function of Incidence angle
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Figure 2¢c. Comparison of flat and curved earth simplified models as a function of Bperpendicular
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Figure 2d. Comparison of Flat and curved earth simplified models as a function of incidence angle

A MODEL FOR THE ESTIMATION OF BASELINE PARAMETERS
Simulation of control points

A set of 90 GCPs is simulated (10 in the azimuth x 9 in the range direction at equal
intervals) for a scene of 100 x 100 km of SAR. A random terrain model is used to
generate DEM in the range of 0 to 100 m elevations. Figure 3a shows representative
elevation profiles in the range and azimuth directions. Out of 90 GCPs, 20 GCPs are
randomly selected for testing the model. Figures 3b & ¢ shows the distribution of
GCPs for 90 and randomly selected 20 points, respectively.
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Figure 3a. A typical elevation profile in the range and azimuth directions
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Figure 3b. The distribution of 90 GCPs Figure 3c. The distribution of randomly selected
in ERS scence of 100 x 100 km. 20 GCPs in ERS scene - One case study.
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Estimation of baseline parameters

Since B, and B vary with range, it is appropriate to resolve them with
reference to the horizontal plane, i.e., B, and B,. From the study of different
data sets over India (as given in Table 1), we observed a variation of 2 - 20 m in
B, along azimuth for 100 km. Therefore, the baseline parameters estimated are
B;, B,, dB;, dB, and C as explained in the introduction.

Table 1: Variation of baseline perpendicular at various places in India

Site Name Start Line B | End line B | Difference
Chamoli 70.0 73.2 -3.2
Kolar 105.6 111.3 -5.7
Bankura 171.1 163.1 8.0
Bhuj 163.3 156.6 6.7
Koyna (pair-1) 121.0 115.9 5.1
Koyna(pair-2) 150.7 146.0 4.7
Bombay 126.2 124.3 1.9
Latur (pair-1) 17.0 36.0 -19.0
Latur (pair-2) 34.0 54.0 -20.0

The exact equation is used for the estimation of baseline parameters by replacing
B, with B, + n.dB, and B;, with B, + n.dB; where n is the ratio of azimuth line
number to the total number of lines in the100 km scene along the azimuth is:

F = -20\/(By + ndB, — rsin(6 + 96)*+(B, + ndB, + r cos(6 + )’

—\/(Bh + ndBy, — rsin(0))*+(B, + ndB, + rcos(0))’] + C -6

For 90 and 20 GCPs, the phase values are simulated using above equation
suitable for ERS SAR data.

Newton-Raphson numerical technique

Since the above equation is non-linear in h, it can be easily solved using the
Newton-Raphson iterative technique by finding the differentials of the parameters.
Thus, the iterative equations for the Newton- Raphson Technique are:

OF oF OF OF oF
Fij+ (5) k+ (WB> I+ (83) p+ (EMB) q+ (%)120, where
h/ i h/ /i R Y

‘1’ is the iteration number, and j” =1,2,3...... n, no. of GCPs.
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Any initial values of By, B,,dBy,dB, & C are assumed and the value of the
above equations are calculated for i = 07 iteration. Now, the ‘n’ (= 90 or 20)
linear equations for five variables are solved using the least square method. For
other iterations, the values of the above parameters are updated as:

B,' = B +k, dB)"' = dBj+1,
Bi*' =Bl 4+ p, dB' =dB 4 ¢,and C*' = C' 4 1.

This iterative process is continued until the values By, B,,dB;,dB, & C
converge within a given threshold. It has been noticed that the above method is
very powerful and it converges within 2-3 iterations. Table 2 gives errors in the
estimation of baseline parameters for different baselines. It can be seen from
Table 2 that the errors are within a few mm. Christoph et. al (1996) has
indicated in his paper the requirement of an accuracy of 5 cm in the estimation
of baseline. This proves the validity of our inversion approach.

Table 2: Error (cm) in the estimation of baseline parameters
for zero phase noise different Baselines

Parameter B = 100 B = 200 B = 300
By, -0.0400 -0.1000 0.100
dB,, 0.0640 0.2250 0.040
B, 0.1100 0.2700 -0.140
dB, -0.1480 -0.5200 -0.020
C 0.0000 0.0000 0.000

A STUDY ON THE STABILITY OF THE MODEL VS. PHASE NOISE

It may be noted that the results reported in Table 2 are free from phase noise.
Generally the interferometric phase values are corrupted by system noise and
the noise due to target variability (Zebker & Villasenor, 1992). The system phase
noise will be of the order of 0.6 radians of phase (equivalent to 5 m error in
DEM). In repeat pass interferometry, the two scenes are acquired at different
times. During this period, there may be changes in the terrain such as vegetation
cover, forest growth and soil moisture levels which cause temporal de-
correlation of the phase signal. This will be reflected in the coherence image.
Therefore one has to study the stability of estimation technique against phase
noise. For this purpose, different levels of phase noise are simulated and the
model has been thoroughly tested.
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Simulation of phase noise

Different models used for the simulation of phase noise as illustrated in Fig. 4
include unweighted random noise, weighted (Gaussian) random noise, percentage
random Gaussian noise, positively biased, negatively biased and unbiased noise etc.
All the models are implemented and investigated in this paper. However, the results
of percentage random Gaussian noise distribution are reported here. Please refer to
the report by Bhagavath and Vishal (2002) for results on the different types of phase
noise. A representative histogram of simulated noise is shown in Fig. 5a at noise
level of 20% (for Gaussian random distribution of noise) and Fig. 5b at noise level
of 10% (for unweighted positively biased random distribution of noise) by
simulating 200 random combinations for 90 GCPs.

Random Noise

Trnareighted Distribution Weighted (Ganssian)
Dis tbution
Absohite Percertaze Absohite Percentaze
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Figure 4. Simulation of different types of random distribution of phases
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Figure 5a. Histogram of 20% random Gaussian Figure 5b. Histogram of 10%

noise with zero mean unweighted noise
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Estimation of baseline with noise

Using the methodology explained earlier, the baseline parameters
By, By, dB;,, dB, &C are estimated using the noisy phase data. Figures 6a, b and
¢ show the errors in B, as a function of percentage random Gaussian noise.
Two hundred sets of noise levels are simulated in the range of 0% to 20% to
represent the above Figs. It can be seen from Fig. 6 that the errors in the
estimation of B, linearly increase with the noise level. For example, the error in
the estimation of B, for 20% positively biased Gaussian random noise varies
from 6 to 14 m depending on the random combination of the phase noise (see
Fig. 6b). Figure 7 shows a linear relation between the RMS error in the
estimation of B, and % noise level. Similar results are reported by Wu (2002)
for a different system parameter.
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Figure 6a. Error in the estimation of B-perpendicular for understanding Gaussian random
distribution. NO. of GCPs = 20, B = 200 m.
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Figure 6b. Error in the estimation of B-perpendicular for positively biased Gaussian random
distribution. Number of GCPs 9, B = 100 m,
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Figure 7. RMS error of B-Perpendicular for 90 GCPs & 200 phase noise simulations

An iterative technique to minimize the effect
of noise on baseline estimation

As per the discussion in earlier Sections, the phase noise introduces error in the
estimation of baseline parameters. Therefore there is a need to minimize the
phase noise before it is used for the baseline estimation. There are several
filtering techniques to reduce the noise in the data. For example, the coherence
image can be taken as a reference for designing a weighted filter to reduce phase
noise. It is difficult to simulate a coherence image and in the absence of such
information, an iterative method is proposed. The steps are as follows:

Estimate the baseline with the noisy phase data as described eralier:
B = N (@) (Fig. 6).

Using the above baseline and the exact model, back calculate phases:
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®’ = F (B) (Equation 1).

Find the error in the phases and then draw a graph between modulus of phase
errors vs. initial phase values:

Ap = (¢—¢).

Find the line of best fit of the above data and estimate the coefficients (slope
ap and intercept a;):

ap and a; (Fig. 8) .

13

Change in phase
{radian)

P hase with noi se (radian)

Figure 8. A comparison of the estimated phase noise for iteraction 1 as a function of phase
corrupted with 20% noise. The line shows the best fit.

Update the phases with the estimated noise levels:
|A¢'| = apdp + a1 and ¢ = ¢ - |AP'|* sign (A¢)
Repeat steps (a) to (e) using updated phase values.

End the iteration when the estimated phase noise converges to a constant
value or minimum noise (Fig. 9). The iterations always leads to convergence as
explained below:

&1 plsaie Wil rdoe, O Berakon, PRI aect = 100
" sCorvenel Frase, |3y ieraion, FRADems = 0205

‘3:, 1 &

E oz . &

E= &

Ua il

a B Fy

T e &

B &

£E2 &

E =5

z 4

= -

& 2
[} T T T T T T T ]

L 2 i L L] 1] i2 I 3
Prass withoutnoles jradani

Figure 9. Minimization of phase noise through iterative technique. No. of GPS = 20, B = 200 m.,
noise level = 20%. The line represents the best fit with converged data.
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The first iteration produces more error in the estimation of baseline
parameters due to noisy phase data. As the phases are updated to reduce the
noise, the estimated baseline parameters for the second iteration will be better
than the first iteration. Thus as the iteration number increases, the phase noise
converges to mean value and thereby increases the accuracy of estimation of
baseline parameters.

Figure 10 shows the improvement in the estimation of baseline parameters
with iteration number. For example, the initial estimate of B, for 20% noise is
110.65 m whereas the actual value is 100.2 m. B, converged to 104.88 m after 15
iterations. Therefore, an improvement of 5.77 m of B, has been achieved for
20% noise level. The errors in the estimation of baseline as reported by Knedlik
et al. (1999) varies from -0.84 to 2.2 m for the estimation of B, with a certain
level of noise in phase. A similar level of improvement is seen for 5% noise (the
error in B, reduces from -2.14 to -0.44 m in 15 iterations as can be seen from
Fig. 10a). The RMS error (Fig. 10b) decreased from 0.49 to 0.09, which shows a
considerable improvement.
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Figure 10a. Improvement in the estimation of B-perpendicular with iteration.
No. of GCPs = 90, B = 100 m.
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Figure 10b. Improvement in the standard deviation for the estimation of B-perpendicular with
iteration. No. of GCPs = 90, B = 100 m.
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Generating DEM

The phase noise of the entire image needs to be minimized before generating
DEM using the exact curved earth model. For this purpose, a transformation
function is developed. The coefficients of the curve (usually second degree
polynomial) of best fit between the initial phase values and the converged final
phase values are estimated. The phase values of the entire image has to be
modified using these coefficients to minimize the noise levels and thereby achieve
high accuracy of the DEM. To illustrate this point, the phases of 90 GCPs are
corrupted with 20% noise level and the GCPs are made into two groups, each
with 45 GCPs by random selection. The transformation coefficients are
estimated using the first set of 45 GCPs (Fig. 11). The corrected phase is -
0.0565x> + 1.3782x - 0.2599 where x is phase with noise. The coefficients are
data dependent and these coefficients are used to correct the phases of the
second set of 45 GCPs. The RMS error of phase noise reduced from 0.45 to 0.27
with the help of the transformation function. Similarly the B, estimation is
improved from 117.88 to 111.04 m whereas the correct value is 100.2 m.

y = -0.0565x" + 1.3752x - 0.2599

{radliany

Ok & MDO

Phase after
renowval of noise

10

Phase with noise (radian}

Figure 11. The noisy phase needs to be filtered using the transformation function
The curve shown is the best fit for a two degree polynomial.

CONCLUSIONS

The simplified models developed here are comparable with the existing models.
At lower B, there is a large variation in h, in different models whereas the
difference decreases as the B, increases. The curved earth model gives higher h,
values and above a 200m baseline, there is practically no difference between flat
earth and curved earth models. The baseline parameters are estimated to an
accuracy of a few mm in the absence of phase noise. The authors are able to
show how the phase noise affects the estimation of baseline parameters using
GCPs. An iterative approach is suggested to find the transformation coefficients
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to reduce the random noise in the GCPs and thereby to improve the phase
quality of the entire image. For 5% phase noise the B, is estimated with an
accuracy of 0.4 m. The methodology can be further improved by bringing
additional information such as coherence image to further reduce the phase
noise. In this paper, for all the calculations, the curved earth model is used.
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